OpenAI 刚刚开源了 PaperBench,用于评估 Agent 复现顶尖论文能力!
OpenAI 刚刚开源了 PaperBench,用于评估 Agent 复现顶尖论文能力!PaperBench 是一个由 OpenAI 开发的基准测试,旨在评估 AI Agent 复现尖端 AI 研究的能 力。它专注于测试 AI 是否能理解研究论文、独立开发代码并执行实验以复现研究结果。
PaperBench 是一个由 OpenAI 开发的基准测试,旨在评估 AI Agent 复现尖端 AI 研究的能 力。它专注于测试 AI 是否能理解研究论文、独立开发代码并执行实验以复现研究结果。
刚刚开源的新基准测试PaperBench,6款前沿大模型驱动智能体PK复现AI顶会论文,新版Claude-3.5-Sonnet显著超越o1/r1排名第一。与去年10月OpenAI考验Agent机器学习代码工程能力MLE-Bnch相比,PaperBench更考验综合能力,不再是只执行单一任务。
论文第一作者为余鑫,香港大学三年级博士生,通讯作者为香港大学齐晓娟教授。主要研究方向为生成模型及其在图像和 3D 中的应用,发表计算机视觉和图形学顶级会议期刊论文数十篇,论文数次获得 Oral, Spotlight 和 Best Paper Honorable Mention 等荣誉。此项研究工作为作者于 Adobe Research 的实习期间完成。
AI学校simahuapeng.ai重塑教育模式,提供名人互动学习。
刚刚,人工智能顶会 NeurIPS 公布了今年的最佳论文(包括 Best Paper 和 Best Paper Runner-up,大会注册者可以看到)。
全球首个AI程序员Devin正以其自主编码、快速学习的超凡能力,挑战传统程序开发的边界。它不仅让投资界为之疯狂,更让程序员们既期待又警惕。这是技术革命的黎明,还是就要被颠覆的工作landscape?
在当今的人工智能领域,Transformer 模型已成为解决诸多自然语言处理任务的核心。然而,Transformer 模型在处理长文本时常常遇到性能瓶颈。传统的位置编码方法,如绝对位置编码(APE)和相对位置编码(RPE),虽然在许多任务中表现良好,但其固定性限制了其在处理超长文本时的适应性和灵活性。
在人工智能的世界里,大型语言模型(LLM)已经成为我们探索未知、解决问题的得力助手。但是,你在编写AI提示词时,是否觉得这个过程就像在“炼丹”,既神秘又难以掌握?别担心,自动提示工程(APE)来帮你了!
这是 AI 智能体在大部分科学研究中超越人类的第一个案例,或许会彻底改变人类与科学文献互动的方式。
人工设计提示词太麻烦了!想过让 LLM 帮你设计用于 LLM 的提示词吗?