
Agent 都这么厉害了,「AI 员工」为什么今天还没有真正出现?
Agent 都这么厉害了,「AI 员工」为什么今天还没有真正出现?AI 同事、AI 数字员工的呼声越来越高,但至今仍没看到很好的落地。这其中的难点和瓶颈到底在哪里? AI 数字员工,真的是一个值得追求的目标吗?
AI 同事、AI 数字员工的呼声越来越高,但至今仍没看到很好的落地。这其中的难点和瓶颈到底在哪里? AI 数字员工,真的是一个值得追求的目标吗?
8月18日,百度文库上线了一款名为 GenFlow2.0 的 Agent 产品。 在 Agent 层出不穷的 2025 年,市场的第一反应很可能是:「又一个而已」。
精心设计了一个由多个AI智能体组成的强大团队,期望它们能像人类专家一样协作解决复杂问题,但却发现这个团队聊着聊着就“精神涣散”,忘记了最初的目标,甚至连彼此的角色都开始混乱。
继通义灵码的 Lingma IDE 之后,阿里在海外推出另一款 Agent Coding 产品。据官方介绍,Qoder (/ˈkoʊdər/) 是一个专为真实软件开发而设计的 Agent Coding 平台(所以谁不真实?)
Memory 一直是 AI 产品的技术「痛点」和必争之地。因为决定用户留存,很多有野心的创业者在思考如何借助 AI 长期化时,都会聚焦 AI + Memory 领域。
进入 2025 年,GUI Agent 赛道热度逐渐抬升 —— OpenAI 推出 Operator 并发布了 ChatGPT Agent,字节则发布了 UI-TARS-1.5 定位 GUI 开源方案。但大多数产品依然依赖本地执行,难以 24h 稳定运行。
硅谷各个模型公司在这个季度,开始分化到各个领域,除了 Google Gemini 和 OpenAI 还在做通用的模型;Anthropic 分化到 Coding、Agentic 的模型能力;Mira 的 Thinking Machines Lab 分化到多模态和下一代交互。
AI Agent正在被要求处理越来越多复杂的任务。 但当它要不停地查资料、跳页面、筛选信息时,显存狂飙、算力吃紧的问题就来了。
大模型与多模态之间的关系,可以理解为大模型就像是人脑中的‘前额叶’,主要负责高级认知功能,但只有前额叶的大脑是无法处理复杂任务的,这就需要多个不同模型之间互相协调,从单纯的“前额叶”走向“完整的大脑”,从而处理更加复杂的现实任务。
就在刚刚,全球首个手机通用Agent,来了!