想去哪就去哪!FindAnything:基于CLIP的开放词汇三维建图,实现真正的“按需探索”
想去哪就去哪!FindAnything:基于CLIP的开放词汇三维建图,实现真正的“按需探索”在复杂、未知的现实环境中,传统导航方法往往依赖闭集语义或事先构建的地图,难以实现真正的“按需探索”。为打破这一瓶颈,本文提出了 FindAnything ——一套融合视觉语言模型的对象为中心、开放词汇三维建图与探索系统。
在复杂、未知的现实环境中,传统导航方法往往依赖闭集语义或事先构建的地图,难以实现真正的“按需探索”。为打破这一瓶颈,本文提出了 FindAnything ——一套融合视觉语言模型的对象为中心、开放词汇三维建图与探索系统。
新的亿级大规模图文对数据集来了,CLIP达成新SOTA!
不止GPT-4o可以制作吉卜力风格图像!更多工具都可以制作吉卜力风图像。甚至2分钟之内,还能用照片生成吉卜力风格动画:蒙娜丽莎给你说Hello。
LeCun谢赛宁等研究人员通过新模型Web-SSL验证了SSL在多模态任务中的潜力,证明其在扩展模型和数据规模后,能媲美甚至超越CLIP。这项研究为无语言监督的视觉预训练开辟新方向,并计划开源模型以推动社区探索。
扩展无语言的视觉表征学习。
CLIP、DINO、SAM 基座的重磅问世,推动了各个领域的任务大一统,也促进了多模态大模型的蓬勃发展。
近年来大语言模型(LLM)的迅猛发展正推动人工智能迈向多模态融合的新纪元。然而,现有主流多模态大模型(MLLM)依赖复杂的外部视觉模块(如 CLIP 或扩散模型),导致系统臃肿、扩展受限,成为跨模态智能进化的核心瓶颈。
最近,我们团队的一位工程师在研究类 ColPali 模型时,受到启发,用新近发布的 jina-clip-v2 模型做了个颇具洞察力的可视化实验。
Florence-VL 提出了使用生成式视觉编码器 Florence-2 作为多模态模型的视觉信息输入,克服了传统视觉编码器(如 CLIP)仅提供单一视觉表征而往往忽略图片中关键的局部信息。
在当今多模态领域,CLIP 模型凭借其卓越的视觉与文本对齐能力,推动了视觉基础模型的发展。CLIP 通过对大规模图文对的对比学习,将视觉与语言信号嵌入到同一特征空间中,受到了广泛应用。