
DeepSearch/DeepResearch中最优文本段选择和URL重排
DeepSearch/DeepResearch中最优文本段选择和URL重排如果你已经读过我们上一篇经典长文《DeepSearch/DeepResearch 的设计与实现》,那么不妨再深挖一些能大幅提升回答质量的细节。这次,我们将重点关注两个细节:
如果你已经读过我们上一篇经典长文《DeepSearch/DeepResearch 的设计与实现》,那么不妨再深挖一些能大幅提升回答质量的细节。这次,我们将重点关注两个细节:
昨天写了一篇关于Gemini的文章,里面很大篇幅聊了关于DeepResearch,没想到把我非常喜欢的号小声比比都炸出来了。
2025 年初,OpenAI、Perplexity、xAI 等 AI 公司都相继推出 Deep(Re)Search 功能。交给模型慢慢思考从而得到更详细的回答,成为了新潮流。
这才 2 月份,深度搜索(Deep Search)就已经隐隐成为 2025 年的新搜索标准了。像谷歌和 OpenAI 这样的巨头,纷纷亮出自己的“Deep Research”产品,努力抢占这波技术浪潮的先机。(我们也很自豪,在同一天也发布了开源的node-deepresearch)。
自媒体的反应堪称狂热:“通用Agent终于实现了!”“这是继DeepSeek之后的又一技术革命!”这样夸张的赞誉随处可见。从Benchmark来看,它的表现确实非常亮眼,在GAIA测试中超越了之前的各种Agent以及OpenAI的DeepResearch。
技术上,从传统的关键词检索,到RAG,大家已经不满足于只是生成对应的简单回答。而是期待大语言模型能够更好地应用于企业级场景,产生更大的价值。不久前,OpenAI推出了最新的深度内容生成神器“DeepResearch”,用户只需一个"特斯拉的合理市值是多少"的提问,