
扩散LLM推理用上类GRPO强化学习!优于单独SFT,UCLA、Meta新框架d1开源
扩散LLM推理用上类GRPO强化学习!优于单独SFT,UCLA、Meta新框架d1开源当前,强化学习(RL)方法在最近模型的推理任务上取得了显著的改进,比如 DeepSeek-R1、Kimi K1.5,显示了将 RL 直接用于基础模型可以取得媲美 OpenAI o1 的性能不过,基于 RL 的后训练进展主要受限于自回归的大语言模型(LLM),它们通过从左到右的序列推理来运行。
当前,强化学习(RL)方法在最近模型的推理任务上取得了显著的改进,比如 DeepSeek-R1、Kimi K1.5,显示了将 RL 直接用于基础模型可以取得媲美 OpenAI o1 的性能不过,基于 RL 的后训练进展主要受限于自回归的大语言模型(LLM),它们通过从左到右的序列推理来运行。
就在昨天,深耕语音、认知智能几十年的科大讯飞,发布了全新升级的讯飞星火推理模型 X1。不仅效果上比肩 DeepSeek-R1,而且我注意到一条官方发布的信息——基于全国产算力训练,在模型参数量比业界同类模型小一个数量级的情况下,整体效果能对标 OpenAI o1 和 DeepSeek R1。
Hyper-RAG利用超图同时捕捉原始数据中的低阶和高阶关联信息,最大限度地减少知识结构化带来的信息丢失,从而减少大型语言模型(LLM)的幻觉。
鲜为人知的是,目前国内超过60%的AI应用,包括DeepSeek的C端应用,联网搜索能力是通过集成博查AI的Search API实现的。大模型需要通过这类API,才能够动态获取最新信息,并输出给用户。AI搜索和传统搜索在入口端的界面上非常相似,底层技术和最终返回给用户的体验却截然不同。
当前,人们对人工智能驱动的药物发现公司(以下简称 AIDD)这一新兴公司确发有效的界定。2025年开年,DeepSeek的爆火为AI医疗和AI制药领域带来了多维度变革。近日,BioPharma Trend发表了一份AI制药研究报告,报告力图从各个维度回答AI对生物医药的关键价值。
英伟达需要DeepSeek的“魔法”
推理模型与普通大语言模型有何本质不同?它们为何会「胡言乱语」甚至「故意撒谎」?Goodfire最新发布的开源稀疏自编码器(SAEs),基于DeepSeek-R1模型,为我们提供了一把「AI显微镜」,窥探推理模型的内心世界。
当 DeepSeek-R1、OpenAI o1 这样的大型推理模型还在通过增加推理时的计算量提升性能时,加州大学伯克利分校与艾伦人工智能研究所突然扔出了一颗深水炸弹:别再卷 token 了,无需显式思维链,推理模型也能实现高效且准确的推理。
坐标深圳,又有新机器人诞生了——智平方新一代通用智能机器人AlphaBot 2(爱宝 2)。
经历了 2025 年初 DeepSeek、Manus 们的冲击,大厂正在重新明确自己下一步的战略。