无奖励也能把Agent练硬,Meta发布早期经验学习,隐式建模+反思(附提示词)
无奖励也能把Agent练硬,Meta发布早期经验学习,隐式建模+反思(附提示词)Meta提出早期经验(Early Experience)让代理在无奖励下从自身经验中学习:在专家状态上采样替代动作、执行并收集未来状态,将这些真实后果当作监督信号。核心是把“自己造成的未来状态”转为可规模化的监督。
Meta提出早期经验(Early Experience)让代理在无奖励下从自身经验中学习:在专家状态上采样替代动作、执行并收集未来状态,将这些真实后果当作监督信号。核心是把“自己造成的未来状态”转为可规模化的监督。
OpenAI的封闭模型在IOI 2025竞赛夺金的同时,英伟达团队交出了一份同样令人振奋的答卷——他们利用完全开源的大模型和全新的GenCluster策略,在IOI 2025竞赛中跑出了媲美金牌选手的成绩!开源模型首次达到了IOI金牌水准。这究竟是怎样实现的?
在 iPhone 上部署端侧 AI 模型,成了互联网的新显学。在 iPhone 上体验端侧模型,门槛其实不算高。打开 App Store,搜索 PocketPal AI,下载安装。如果不习惯英文界面,可以在设置 (Setting) 里找到语言 (Language) 选项,切换成中文。
中科院的这篇工作解决了“深度搜索智能体”(deep search agents),两个实打实的工程痛点,一个是问题本身不够难导致模型不必真正思考,另一个是上下文被工具长文本迅速挤爆导致过程提前夭折,研究者直面挑战,从数据和系统两端同时重塑训练与推理流程,让复杂推理既有用又能跑得起来。
在代码层面,大语言模型已经能够写出正确而优雅的程序。但在机器学习工程场景中,它离真正“打赢比赛”仍有不小差距。
在训练多轮 LLM Agent 时(如需要 30 + 步交互才能完成单个任务的场景),研究者遇到了一个严重的训练不稳定问题:标准的强化学习方法(PPO/GRPO)在稀疏奖励环境下表现出剧烈的熵值震荡,导致训练曲线几乎不收敛。
在今年的国际计算机视觉大会(ICCV 2025)上,来自浙江大学、香港中文大学、上海交通大学和上海人工智能实验室的研究人员联合提出了第一人称联合预测智能体 EgoAgent。
当Agent学会了自我进化,我们距离AGI还有多远?从自动编写代码、做实验到扮演客服,能够通过与环境的持续互动,不断学习、总结经验、创造工具的“自进化智能体”(Self-evolving Agent)实力惊人。
国内首个少样本通用具身操作基础模型发布,跨越视觉语言与机器人操作的鸿沟。
Manus 1.5 全面提升了任务执行的速度、可靠性与结果质量。从研究分析到网页开发、再到 PPT 创建,在各类任务场景中均实现了显著性能跃升。此次更新引入了两款 Agent: