机器如何能像人类和动物一样高效地学习?机器如何学习世界运作方式并获得常识?机器如何学习推理和规划……
机器如何能像人类和动物一样高效地学习?机器如何学习世界运作方式并获得常识?机器如何学习推理和规划……
近年来,大型语言模型(LLM)在数学应用题和数学定理证明等任务中取得了长足的进步。数学推理需要严格的、形式化的多步推理过程,因此是 LLMs 推理能力进步的关键里程碑, 但仍然面临着重要的挑战。
大型语言模型(LLM)往往会追求更长的「上下文窗口」,但由于微调成本高、长文本稀缺以及新token位置引入的灾难值(catastrophic values)等问题,目前模型的上下文窗口大多不超过128k个token
前不久,斯坦福大学教授吴恩达在演讲中提到了智能体的巨大潜力,这也引起了众多讨论。其中,吴恩达谈到基于 GPT-3.5 构建的智能体工作流在应用中表现比 GPT-4 要好。这表明,将目光局限于大模型不一定可取,智能体或许会比其所用的基础模型更加优秀。
前不久,斯坦福大学教授吴恩达在演讲中提到了智能体的巨大潜力,这也引起了众多讨论。其中,吴恩达谈到基于 GPT-3.5 构建的智能体工作流在应用中表现比 GPT-4 要好。这表明,将目光局限于大模型不一定可取,智能体或许会比其所用的基础模型更加优秀。
近期,多模态大模型 (MLLM) 在文本中心的 VQA 领域取得了显著进展,尤其是多个闭源模型,例如:GPT4V 和 Gemini,甚至在某些方面展现了超越人类能力的表现。
Snowflake 发布高「企业智能」模型 Arctic,专注于企业内部应用。
AI,能够重写人类基因组了? 就在刚刚,初创公司Profluent宣布,完全由AI设计的基因编辑器,已经成功编辑了人类细胞中的DNA。
虽然大型语言模型(LLM)在各种常见的自然语言处理任务中展现出了优异的性能,但随之而来的幻觉,也揭示了模型在真实性和透明度上仍然存在问题。
近年来,多模态大型语言模型(MLLM)在各个领域的应用取得了显著的成功。然而,作为许多下游任务的基础模型,当前的 MLLM 由众所周知的 Transformer 网络构成,这种网络具有较低效的二次计算复杂度。