
LLM幻觉,竟因知识「以大欺小」!华人团队祭出对数线性定律与CoDA策略
LLM幻觉,竟因知识「以大欺小」!华人团队祭出对数线性定律与CoDA策略来自UIUC等大学的华人团队,从LLM的基础机制出发,揭示、预测并减少幻觉!通过实验,研究人员揭示了LLM的知识如何相互影响,总结了幻觉的对数线性定律。更可预测、更可控的语言模型正在成为现实。
来自UIUC等大学的华人团队,从LLM的基础机制出发,揭示、预测并减少幻觉!通过实验,研究人员揭示了LLM的知识如何相互影响,总结了幻觉的对数线性定律。更可预测、更可控的语言模型正在成为现实。
近年来,大语言模型(LLM)的性能提升逐渐从训练时规模扩展转向推理阶段的优化,这一趋势催生了「测试时扩展(test-time scaling)」的研究热潮。
语言是离散的,所以适合用自回归模型来生成;而图像是连续的,所以适合用扩散模型来生成。在生成模型发展早期,这种刻板印象广泛存在于很多研究者的脑海中。
大型语言模型 (LLM) 在软体机器人设计领域展现出了令人振奋的应用潜力。
在人工智能飞速发展的今天,LLM 的能力令人叹为观止,但其局限性也日益凸显 —— 它们往往被困于训练数据的「孤岛」,无法直接触及实时信息或外部工具。
最新研究发现,LLM在面对人格测试时,会像人一样「塑造形象」,提升外向性和宜人性得分。AI的讨好倾向,可能导致错误的回复,需要引起警惕。
大模型虽然推理能力增强,却常常「想太多」,回答简单问题也冗长复杂。Rice大学的华人研究者提出高效推理概念,探究了如何帮助LLM告别「过度思考」,提升推理效率。
当大多数AI Agent仍在挣扎于结构化推理能力不足的困境时,本文带来了一个来自认知科学领域的突破性解决方案。
简单的任务,传统的Transformer却错误率极高。Meta FAIR团队重磅推出多token注意力机制(MTA),精准捕捉复杂信息,带来模型性能飞升!
视觉Token可以与LLMs词表无缝对齐了!