
Claude团队打开大模型「脑回路」,开源LLM思维可视化工具来了
Claude团队打开大模型「脑回路」,开源LLM思维可视化工具来了Claude团队来搞开源了——推出“电路追踪”(circuit tracing)工具,可以帮大伙儿读懂大模型的“脑回路”,追踪其思维过程。该工具的核心在于生成归因图(attribution graphs),其作用类似于大脑的神经网络示意图,通过可视化模型内部超节点及其连接关系,呈现LLM处理信息的路径。
Claude团队来搞开源了——推出“电路追踪”(circuit tracing)工具,可以帮大伙儿读懂大模型的“脑回路”,追踪其思维过程。该工具的核心在于生成归因图(attribution graphs),其作用类似于大脑的神经网络示意图,通过可视化模型内部超节点及其连接关系,呈现LLM处理信息的路径。
多模态大模型(MLLM)在静态图像上已经展现出卓越的 OCR 能力,能准确识别和理解图像中的文字内容。MME-VideoOCR 致力于系统评估并推动MLLM在视频OCR中的感知、理解和推理能力。
斯坦福Hazy实验室推出新一代低延迟推理引擎「Megakernel」,将Llama-1B模型前向传播完整融合进单一GPU内核,实现推理时间低于1毫秒。在B200上每次推理仅需680微秒,比vLLM快3.5倍。
近日,NVIDIA 联合香港大学、MIT 等机构重磅推出 Fast-dLLM,以无需训练的即插即用加速方案,实现了推理速度的突破!通过创新的技术组合,在不依赖重新训练模型的前提下,该工作为扩散模型的推理加速带来了突破性进展。本文将结合具体技术细节与实验数据,解析其核心优势。
EfficientLLM项目聚焦LLM效率,提出三轴分类法和六大指标,实验包揽全架构、多模态、微调技术,可为研究人员提供效率与性能平衡的参考。
你是否曾对大语言模型(LLMs)下达过明确的“长度指令”?
信息检索能力对提升大语言模型 (LLMs) 的推理表现至关重要,近期研究尝试引入强化学习 (RL) 框架激活 LLMs 主动搜集信息的能力,但现有方法在训练过程中面临两大核心挑战:
MetaMind是一个多智能体框架,专门解决大语言模型在社交认知方面的根本缺陷。传统的 LLM 常常难以应对现实世界中人际沟通中固有的模糊性和间接性,无法理解未说出口的意图、隐含的情绪或文化敏感线索。MetaMind首次使LLMs在关键心理理论(ToM)任务上达到人类水平表现。
来自华盛顿大学、AI2、UC伯克利研究团队证实,「伪奖励」(Spurious Rewards)也能带来LLM推理能力提升的惊喜。
又是一个让程序员狂欢的研究!来自 OpenHands、耶鲁、南加大和斯坦福的研究团队刚刚发布了 LocAgent—— 一个专门用于代码定位的图索引 LLM Agent 框架,直接把代码定位准确率拉到了 92.7% 的新高度。该研究已被 ACL 2025 录用。