真·MoE?路由LLM最全面探索:一种笔记本也能玩的大模型Scaling Up研究
真·MoE?路由LLM最全面探索:一种笔记本也能玩的大模型Scaling Up研究事关路由LLM(Routing LLM),一项截至目前最全面的研究,来了——
事关路由LLM(Routing LLM),一项截至目前最全面的研究,来了——
近段时间,著名 AI 科学家 Andrej Karpathy 提出的氛围编程(vibe coding)是 AI 领域的一大热门话题。简单来说,氛围编程就是鼓励开发者忘掉代码,进入开发的氛围之中。更简单地讲,就是向 LLM 提出需求,然后「全部接受」即可。
现在各种框架满天飞,你是否想过这个问题,一个真正优秀的框架究竟需要多少代码?研究者Zach给出了一个令人惊讶的答案:仅需100行。这个名为PocketFlow的框架不仅体积小到令人难以置信(仅56KB),还能用来构建一个完整的Cursor编码助手。这个发现不仅挑战了我们对框架复杂性的认知,更揭示了一个重要的设计哲学:真正的创新往往来自于化繁为简。
DeepSeek 提出的 GRPO 可以极大提升 LLM 的强化学习效率,不过其论文中似乎还缺少一些关键细节,让人难以复现出大规模和工业级的强化学习系统。
HuixiangDou 是群聊场景的 LLM 知识助手。
角色扮演 AI(Role-Playing Language Agents,RPLAs)作为大语言模型(LLM)的重要应用,近年来获得了广泛关注。
Neurobo(弈智交互)是一家位于上海的创业公司,获得前百度总裁、微软副总裁陆奇博士创办的奇绩创坛的投资。团队核心成员来自清华大学与日本筑波大学等海内外名校,致力于结合 LLM 与现实场景数据,让二次元用户可以将「谷子」变为随身相伴,随时触达的实体情感伴侣。
谷歌团队发现了全新Scaling Law!新方法DiLoCo被证明更好、更快、更强,可在多个数据中心训练越来越大的LLM。
LLM自身有望在无限长token下检索信息!无需训练,在检索任务「大海捞针」(Needle-in-a-Haystack)测试中,新方法InfiniRetri让有效上下文token长度从32K扩展至1000+K,让7B模型比肩72B模型。
大语言模型(LLM)近年来凭借训练时扩展(train-time scaling)取得了显著性能提升。然而,随着模型规模和数据量的瓶颈显现,测试时扩展(test-time scaling)成为进一步释放潜力的新方向。