为什么记忆成为下一代 AI 的「核心变量」 | GAIR Live 20
为什么记忆成为下一代 AI 的「核心变量」 | GAIR Live 20人工智能在过去的十年中,以惊人的速度革新了信息处理和内容生成的方式。然而,无论是大语言模型(LLM)本体,还是基于检索增强生成(RAG)的系统,在实际应用中都暴露出了一个深层的局限性:缺乏跨越时间的、可演化的、个性化的“记忆”。它们擅长瞬时推理,却难以实现持续积累经验、反思历史、乃至真正像人一样成长的目标。
人工智能在过去的十年中,以惊人的速度革新了信息处理和内容生成的方式。然而,无论是大语言模型(LLM)本体,还是基于检索增强生成(RAG)的系统,在实际应用中都暴露出了一个深层的局限性:缺乏跨越时间的、可演化的、个性化的“记忆”。它们擅长瞬时推理,却难以实现持续积累经验、反思历史、乃至真正像人一样成长的目标。
最近两周的模型竞赛非常热闹:OpenAI 在 11 月 12 日发布 GPT-5.1,引入更强的推理深度与更高效的对话体验;Google 在 11 月 18 日发布 Gemini 3,全面强化多模态理解与复杂推理能力;Anthropic 在 11 月 24 日又发布了 Claude Opus 4.5,模型在专业文档处理、代码生成与长流程 agent 方面有显著提升。
在 LLM 优化领域,有两个响亮的名字:Adam(及其变体 AdamW)和 Muon。
如果告诉你,仅仅改变提示词(Prompt)的结构,就能让大模型在复杂推理任务上的表现暴涨 60%,你相信吗?
1米3的机器人小土豆,三步上篮也可以如此丝滑。
如果你想恶意攻击一个大语言模型(LLM),比如 Gemini 或者 Deepseek,你会怎么做?
扩散式语言模型(Diffusion Language Model, DLM)虽近期受关注,但社区长期受限于(1)缺乏易用开发框架与(2)高昂训练成本,导致多数 DLM 难以在合理预算下复现,初学者也难以真正理解其训练与生成机制。
前 OpenAI 联合创始人、特斯拉 AI 总监 Andrej Karpathy 也一样。他在前几天发推,说自己「开始养成用 LLM 阅读一切的习惯」。Karpathy 在周六用氛围编程做了个新的项目,让四个最新的大模型组成一个 LLM 议会,给他做智囊团。
近日,AI生命科学企业津渡生科宣布完成千万级Pre-A+轮融资,由深圳南山区战略直投平台南山战新投投资。值得注意的是,仅2025年该公司就连续获得了红杉中国种子基金、创东方投资分别领投天使+轮、Pre-A轮,加上本轮融资已完成累计近亿元人民币。
在过去两年,大语言模型 (LLM) + 外部工具的能力,已成为推动 AI 从 “会说” 走向 “会做” 的关键机制 —— 尤其在 API 调用、多轮任务规划、知识检索、代码执行等场景中,大模型要想精准调用工具,不仅要求模型本身具备推理能力,还需要借助海量高质量、针对性强的函数调用训练数据。