AI资讯新闻榜单内容搜索-LLMs

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: LLMs
RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

RewardMap: 通过多阶段强化学习解决细粒度视觉推理的Sparse Reward

近年来,大语言模型(LLMs)以及多模态大模型(MLLMs)在多种场景理解和复杂推理任务中取得突破性进展。

来自主题: AI技术研报
5367 点击    2025-10-21 15:53
不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

不再靠「猜坐标」!颜水成团队等联合发布PaDT多模态大模型:实现真正的多模态表征输出

近年来,多模态大语言模型(Multimodal Large Language Models, MLLMs)在图文理解、视觉问答等任务上取得了令人瞩目的进展。然而,当面对需要精细空间感知的任务 —— 比如目标检测、实例分割或指代表达理解时,现有模型却常常「力不从心」。

来自主题: AI技术研报
8845 点击    2025-10-16 12:31
机器人「看片」自学新技能:NovaFlow从生成视频中提取动作流,实现零样本操控

机器人「看片」自学新技能:NovaFlow从生成视频中提取动作流,实现零样本操控

机器人「看片」自学新技能:NovaFlow从生成视频中提取动作流,实现零样本操控

构建能够在新环境中、无需任何针对性训练就能执行多样化任务的通用机器人,是机器人学领域一个长期追逐的圣杯。近年来,随着大型语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,许多研究者将希望寄托于视觉 - 语言 - 动作(VLA)模型,期望它们能复刻 LLM 和 VLM 在泛化性上取得的辉煌。

来自主题: AI技术研报
7217 点击    2025-10-13 11:02
复旦、同济和港中文等重磅发布:强化学习在大语言模型全周期的全面综述

复旦、同济和港中文等重磅发布:强化学习在大语言模型全周期的全面综述

复旦、同济和港中文等重磅发布:强化学习在大语言模型全周期的全面综述

近年来,以强化学习为核心的训练方法显著提升了大语言模型(Large Language Models, LLMs)的推理能力与对齐性能,尤其在理解人类意图、遵循用户指令以及增强推理能力方面效果突出。尽管现有综述对强化学习增强型 LLMs 进行了概述,但其涵盖范围较为有限,未能全面总结强化学习在 LLMs 全生命周期中的作用机制。

来自主题: AI技术研报
6669 点击    2025-10-06 13:22
100 页 Agentic RL 综述!牛津、新国立、AI Lab 等联合定义 LLM 下半场

100 页 Agentic RL 综述!牛津、新国立、AI Lab 等联合定义 LLM 下半场

100 页 Agentic RL 综述!牛津、新国立、AI Lab 等联合定义 LLM 下半场

来自牛津大学、新加坡国立大学、伊利诺伊大学厄巴纳-香槟分校,伦敦大学学院、帝国理工学院、上海人工智能实验室等等全球 16 家顶尖研究机构的学者,共同撰写并发布了长达百页的综述:《The Landscape of Agentic Reinforcement Learning for LLMs: A Survey》。

来自主题: AI技术研报
7084 点击    2025-10-03 14:15
给几何图片写标题就能让AI更聪明,UIUC发布高质量可泛化几何数据集

给几何图片写标题就能让AI更聪明,UIUC发布高质量可泛化几何数据集

给几何图片写标题就能让AI更聪明,UIUC发布高质量可泛化几何数据集

随着多模态大语言模型(MLLMs)在视觉问答、图像描述等任务中的广泛应用,其推理能力尤其是数学几何问题的解决能力,逐渐成为研究热点。 然而,现有方法大多依赖模板生成图像 - 文本对,泛化能力有限,且视

来自主题: AI技术研报
6259 点击    2025-09-26 13:30
为 OpenAI 秘密提供模型测试, OpenRouter 给 LLMs 做了套“网关系统”

为 OpenAI 秘密提供模型测试, OpenRouter 给 LLMs 做了套“网关系统”

为 OpenAI 秘密提供模型测试, OpenRouter 给 LLMs 做了套“网关系统”

OpenRouter 创立于 2023 年初,给用户提供一个统一的 API Key,用于调用自身接入的所有模型,既包括了市面上的主流基础模型,也包括部分开源模型,一些开源模型还有多个不同的供应商。如果用户选择使用自有的 Key ,也可以同时享受 OpenRouter 的统一接口与其他服务。

来自主题: AI资讯
8422 点击    2025-09-24 09:51
突破单链思考上限,清华团队提出原生「并行思考」scale范式

突破单链思考上限,清华团队提出原生「并行思考」scale范式

突破单链思考上限,清华团队提出原生「并行思考」scale范式

近年来,大语言模型(LLMs)在复杂推理任务上的能力突飞猛进,这在很大程度上得益于深度思考的策略,即通过增加测试时(test-time)的计算量,让模型生成更长的思维链(Chain-of-Thought)。

来自主题: AI技术研报
6459 点击    2025-09-18 14:49
来自MIT的最新研究-RL's Razor|展望LLMs Post-Training下的前沿探索与思考

来自MIT的最新研究-RL's Razor|展望LLMs Post-Training下的前沿探索与思考

来自MIT的最新研究-RL's Razor|展望LLMs Post-Training下的前沿探索与思考

来自MIT Improbable AI Lab的研究者们最近发表了一篇题为《RL's Razor: Why Online Reinforcement Learning Forgets Less》的论文,系统性地回答了这个问题,他们不仅通过大量实验证实了这一现象,更进一步提出了一个简洁而深刻的解释,并将其命名为 “RL's Razor”(RL的剃刀)。

来自主题: AI技术研报
6243 点击    2025-09-18 14:26
7个AI玩狼人杀,GPT-5获断崖式MVP,Kimi手段激进

7个AI玩狼人杀,GPT-5获断崖式MVP,Kimi手段激进

7个AI玩狼人杀,GPT-5获断崖式MVP,Kimi手段激进

一群AI玩狼人杀,GPT-5断崖式领先,胜率达到了惊人的96.7%。 OpenAI的总裁格雷格·布罗克曼转发了这样的一个基准测试:让7个强大的LLMs,包括开源和闭源,玩了210场完整的狼人杀。

来自主题: AI技术研报
7095 点击    2025-09-02 15:22