
语言模型新范式:首个8B扩散大语言模型LLaDA发布,性能比肩LLaMA 3
语言模型新范式:首个8B扩散大语言模型LLaDA发布,性能比肩LLaMA 3近年来,大语言模型(LLMs)取得了突破性进展,展现了诸如上下文学习、指令遵循、推理和多轮对话等能力。目前,普遍的观点认为其成功依赖于自回归模型的「next token prediction」范式。
近年来,大语言模型(LLMs)取得了突破性进展,展现了诸如上下文学习、指令遵循、推理和多轮对话等能力。目前,普遍的观点认为其成功依赖于自回归模型的「next token prediction」范式。
研究人员首次探讨了大型语言模型(LLMs)在问题生成任务中的表现,与人类生成的问题进行了多维度对比,结果发现LLMs倾向于生成需要较长描述性答案的问题,且在问题生成中对上下文的关注更均衡。
随着大模型(LLMs)的发展,AI 写作取得了较大进展。然而,现有的方法大多依赖检索知识增强生成(RAG)和角色扮演等技术,其在信息的深度挖掘方面仍存在不足,较难突破已有知识边界,导致生成的内容缺乏深度和原创性。
瞄准推理时扩展(Inference-time scaling),DeepMind新的进化搜索策略火了! 所提出的“Mind Evolution”(思维进化),能够优化大语言模型(LLMs)在规划和推理中的响应。
WaveForms致力于开发音频大模型(LLMs),通过创新的端到端音频处理技术,实现更加实时、类人化且情感智能化的语音交互。与传统语音模型不同,WaveForms的音频模型不是语音转文本再转语音,而是能够直接处理音频,实现更自然的对话和情感互动。
该技术报告的主要作者 Lu Wang, Fangkai Yang, Chaoyun Zhang, Shilin He, Pu Zhao, Si Qin 等均来自 Data, Knowledge, and Intelligence (DKI) 团队,为微软 TaskWeaver, WizardLLM, Windows GUI Agent UFO 的核心开发者。
大型语言模型(LLMs)能够解决研究生水平的数学问题,但今天的搜索引擎却无法准确理解一个简单的三词短语。
在多模态大语言模型(MLLMs)的发展中,视觉 - 语言连接器作为将视觉特征映射到 LLM 语言空间的关键组件,起到了桥梁作用。
检索-增强生成 (RAG) 是一个永不过时的话题,并在不断扩展以增强LLMs 的功能。对于那些不太熟悉RAG 的人来说:这种方法利用外部知识来增强模型的能力,从外部资源中检索您实际需要的信息。
在人工智能领域,大语言模型(LLMs)展现出了令人惊叹的能力,但在因果推理这一人类智能的核心能力上仍面临重大挑战。特别是在从相关性信息推断因果关系这一任务上,现有的大语言模型表现出明显的不足。