
上下文即记忆!港大&快手提出场景一致的交互式视频世界模型,记忆力媲美Genie3,且更早问世!
上下文即记忆!港大&快手提出场景一致的交互式视频世界模型,记忆力媲美Genie3,且更早问世!AI生成的人物和场景转头就变样,缺乏一致性? nonono,这回不一样了,康康下面的demo! 游戏地图:《塞尔达传说》中的绿色田野
AI生成的人物和场景转头就变样,缺乏一致性? nonono,这回不一样了,康康下面的demo! 游戏地图:《塞尔达传说》中的绿色田野
Memory 一直是 AI 产品的技术「痛点」和必争之地。因为决定用户留存,很多有野心的创业者在思考如何借助 AI 长期化时,都会聚焦 AI + Memory 领域。
要让视频生成模型真正成为模拟真实物理世界的「世界模型」,必须具备长时间生成并保留场景记忆的能力。然而,交互式长视频生成一直面临一个致命短板:缺乏稳定的场景记忆。镜头稍作移动再转回,眼前景物就可能「换了个世界」。
一个小解码器让所有模型当上领域专家!华人团队新研究正在引起热议。 他们提出了一种比目前业界主流采用的DAPT(领域自适应预训练)和RAG(检索增强生成)更方便、且成本更低的方法。
近期,基于大语言模型的智能体(LLM-based agent)在学术界和工业界中引起了广泛关注。对于智能体而言,记忆(Memory)是其中的重要能力,承担了记录过往信息和外部知识的功能,对于提高智能体的个性化等能力至关重要。
你说:“帮我列下今天的会议日程。” 它迅速回复:“9 点产品部,11 点市场部,下午 2 点财务汇报。”——完美。
随着大模型应用场景的不断拓展,其在处理长期对话时逐渐暴露出的记忆局限性日益凸显,主要表现为固定长度上下文窗口导致的“健忘”问题。
我们常把LangGraph、RAG、memory、evals等工具比作乐高积木,经验丰富的人知道如何搭配使用,就能迅速解决问题
自Agent火了以后,有关"记忆"的框架如雨后春笋般涌现,但绝大多数仍是为"单兵作战"设计,难以适应需要复杂协作、信息交互量暴增10倍的多智能体系统(MAS)
该项目来自百家 AI,是北京邮电大学白婷副教授所指导的研究小组, 团队致力于为硅基人类倾力打造情感饱满、记忆超凡的智慧大脑。