
开放域检测新SOTA!中山大学美团出品,开源性能最强
开放域检测新SOTA!中山大学美团出品,开源性能最强开放域检测领域,迎来新进展——
开放域检测领域,迎来新进展——
最近一段时间开源大模型市场非常热闹,先是苹果开源了70亿参数小模型DCLM,然后是重量级的Meta的Llama 3.1 和Mistral Large 2相继开源,在多项基准测试中Llama 3.1超过了闭源SOTA模型。 不过开源派和闭源派之间的争论并没有停下来的迹象。
紧跟着Meta的重磅发布,Mistral Large 2也带着权重一起上新了,而且参数量仅为Llama 3.1 405B的三分之一。不仅在编码、数学和多语言等专业领域可与SOTA模型直接竞争,还支持单节点部署。
谷歌提出了一种新的基于ML的大气环流模型NeuralGCM,比传统的基于物理的模型节省了几个数量级的计算量,计算成本降低了10万倍,相当于高性能计算领域25年的进步速度。对于2-15天的天气预报,这种方法比SOTA物理模型还要准确。
GPT-4o mini主打一个字「快」。
大模型当上福尔摩斯,学会对视频异常进行检测了。 来自华中科技大学、百度、密歇根大学的研究团队,提出了一种可解释性的视频异常检测框架,名为Holmes-VAD。
多件衣服按指定穿法一键虚拟试穿!
本文将为大家介绍CVPR 2024 Highlight的论文LangSplat: 3D Language Gaussian Splatting(三维语义高斯泼溅)。LangSplat在开放文本目标定位和语义分割任务上达到SOTA性能。在1440×1080分辨率的图像上,查询速度比之前的SOTA方法LERF快了199倍。代码已开源。
近日,LeCun和谢赛宁等大佬,共同提出了这一种全新的SOTA MLLM——Cambrian-1。开创了以视觉为中心的方法来设计多模态模型,同时全面开源了模型权重、代码、数据集,以及详细的指令微调和评估方法。
入选CVPR 2024 Highlight的三维语义高斯泼溅最新成果,查询速度比之前的SOTA方法LERF快了199倍!