AAAI 2026 Oral|快手提出全新「检索数据引擎」CroPS,打破搜索信息茧房
AAAI 2026 Oral|快手提出全新「检索数据引擎」CroPS,打破搜索信息茧房短视频搜索业务是向量检索在工业界最核心的应用场景之一。然而,当前业界普遍采用的「自强化」训练范式过度依赖历史点击数据,导致系统陷入信息茧房,难以召回潜在相关的新鲜内容。
短视频搜索业务是向量检索在工业界最核心的应用场景之一。然而,当前业界普遍采用的「自强化」训练范式过度依赖历史点击数据,导致系统陷入信息茧房,难以召回潜在相关的新鲜内容。
近年来,大语言模型在算术、逻辑、多模态理解等任务上之所以取得显著进展,很大程度上依赖于思维链(CoT)技术。所谓 CoT,就是让模型在给出最终答案前,先生成一系列类似「解题步骤」的中间推理。 这种方式
文本提示图像分割(Text-prompted image segmentation)是实现精细化视觉理解的关键技术,在人机交互、具身智能及机器人等前沿领域具有重大的战略意义。这项技术使机器能够根据自然语言指令,在复杂的视觉场景中定位并分割出任意目标。
在 SIGGRAPH Asia 2025 期间,盛大 AI 东京研究院(Shanda AI Research Tokyo)以展台活动、BoF 学术讨论与顶尖教授闭门交流等形式完成首次公开亮相,标志着盛大在数字人的 “交互智能 (Interactive Intelligence)” 与世界模型的 “时空智能 (Spatiotemporal Intelligence)” 等两大方向的研究
多语言大模型(MLLM)在面对多语言任务时,往往面临一个选择难题:是用原来的语言直接回答,还是翻译成高资源语言去推理?
作者在包含 50 多个任务的多个仿真和真实世界场景中评估了 SpatialActor。它在 RLBench 上取得了 87.4% 的成绩,达到 SOTA 水平;在不同噪声条件下,性能提升了 13.9% 至 19.4%,展现出强大的鲁棒性。目前该论文已被收录为 AAAI 2026 Oral,并将于近期开源。
REG 是一种简单而有效的方法,仅通过引入一个 class token 便能大幅加速生成模型的训练收敛。其将基础视觉模型(如 DINOv2)的 class token 与 latent 在空间维度拼接后共同加噪训练,从而显著提升 Diffusion 的收敛速度与性能上限。在 ImageNet 256×256 上,
在推荐系统迈向多模态的今天,如何兼顾数据隐私与个性化图文理解?悉尼科技大学龙国栋教授团队联合香港理工大学杨强教授、张成奇教授团队,提出全新框架 FedVLR。该工作解决了联邦环境下多模态融合的异质性难题,已被人工智能顶级会议 AAAI 2026 接收为 Oral Presentation。
随着大型视觉语言模型在多个下游任务的广泛应用,其潜在的安全风险也开始快速显露。研究表明,即便是最先进的大型视觉语言模型,也可能在面对带有隐蔽的恶意意图的图像 — 文本输入时给出违规甚至有害的响应,而现有的轻量级的安全对齐方案都具有一定的局限性。
近日,AAAI 2026 公布了录用结果,该会议是是人工智能领域极具影响力的国际顶级学术会议之一。据悉本次会议共有 23680 篇投稿进入审稿阶段,最终 4167 篇论文被录用,录取率为 17.6%。