AI资讯新闻榜单内容搜索-Physics-in

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: Physics-in
人形机器人的真机强化学习! ICLR 2026 通研院提出人形机器人预训练与真机微调新范式

人形机器人的真机强化学习! ICLR 2026 通研院提出人形机器人预训练与真机微调新范式

人形机器人的真机强化学习! ICLR 2026 通研院提出人形机器人预训练与真机微调新范式

目前,人形机器人已经能在现实中跳舞、奔跑、甚至完成后空翻。但接下来更关键的问题是:这些系统能否在部署之后持续地进行强化学习 —— 在真实世界的反馈中变得更稳定、更可靠,并在分布不断变化的新环境里持续适应与改进?

来自主题: AI技术研报
9831 点击    2026-02-08 11:56
ICLR 2025 Spotlight | 慕尼黑工业大学&北京大学:迈向无冲突训练的ConFIG方法

ICLR 2025 Spotlight | 慕尼黑工业大学&北京大学:迈向无冲突训练的ConFIG方法

ICLR 2025 Spotlight | 慕尼黑工业大学&北京大学:迈向无冲突训练的ConFIG方法

在深度学习的多个应用场景中,联合优化多个损失项是一个普遍的问题。典型的例子包括物理信息神经网络(Physics-Informed Neural Networks, PINNs)、多任务学习(Multi-Task Learning, MTL)和连续学习(Continual Learning, CL)。然而,不同损失项的梯度方向往往相互冲突,导致优化过程陷入局部最优甚至训练失败。

来自主题: AI技术研报
9535 点击    2025-03-17 14:55