
李飞飞团队提出ReKep,让机器人具备空间智能,还能整合GPT-4o
李飞飞团队提出ReKep,让机器人具备空间智能,还能整合GPT-4o视觉与机器人学习的深度融合。
视觉与机器人学习的深度融合。
从几周前 Sam Altman 在 X 上发布草莓照片开始,整个行业都在期待 OpenAI 发布新模型。根据 The information 的报道,Strawberry 就是之前的 Q-star,其合成数据的方法会大幅提升 LLM 的智能推理能力,尤其体现在数学解题、解字谜、代码生成等复杂推理任务。这个方法也会用在 GPT 系列的提升上,帮助 OpenAI 新一代 Orion。
AGI 正在迎来新范式,RL 是 LLM 的秘密武器。
SFT、RLHF 和 DPO 都是先估计 LLMs 本身的偏好,再与人类的偏好进行对齐
RLHF到底是不是强化学习?最近,AI大佬圈因为这个讨论炸锅了。和LeCun同为质疑派的Karpathy表示:比起那种让AlphaGo在围棋中击败人类的强化学习,RLHF还差得远呢。
RLHF 与 RL 到底能不能归属为一类,看来大家还是有不一样的看法。
为了对齐 LLM,各路研究者妙招连连。
大模型展现出了卓越的指令跟从和任务泛化的能力,这种独特的能力源自 LLMs 在训练中使用了指令跟随数据以及人类反馈强化学习(RLHF)。
利用Pearl AI来探索牙科的未来
Meta、UC伯克利、NYU共同提出元奖励语言模型,给「超级对齐」指条明路:让AI自己当裁判,自我改进对齐,效果秒杀自我奖励模型。