
大模型Scaling Law同样适用于下游任务性能?斯坦福、谷歌最新研究揭秘
大模型Scaling Law同样适用于下游任务性能?斯坦福、谷歌最新研究揭秘大模型的成功很大程度上要归因于 Scaling Law 的存在,这一定律量化了模型性能与训练数据规模、模型架构等设计要素之间的关系,为模型开发、资源分配和选择合适的训练数据提供了宝贵的指导。
来自主题: AI技术研报
2608 点击 2024-02-27 14:00
大模型的成功很大程度上要归因于 Scaling Law 的存在,这一定律量化了模型性能与训练数据规模、模型架构等设计要素之间的关系,为模型开发、资源分配和选择合适的训练数据提供了宝贵的指导。
Dwarkesh 预计,有 70% 左右的概率人们能够通过 scaling 在 2024 年之前实现更强的 AI,这种 AI 能够实现大量认知劳动的自动化,进而促进 AI 的进一步发展。但如果 scaling law 失效,那么实现 AGI 的过程会非常漫长和艰难。
计划训练一个10B的模型,想知道至少需要多大的数据?收集到了1T的数据,想知道能训练一个多大的模型?老板准备1个月后开发布会,给的资源是100张A100,那应该用多少数据训一个多大模型最终效果最好?