
华人科学家登上Nature:几行代码,优化复合AI系统
华人科学家登上Nature:几行代码,优化复合AI系统华人学者、斯坦福大学副教授 James Zou 领导的团队提出了 TextGrad ,通过文本自动化“微分”反向传播大语言模型(LLM)文本反馈来优化 AI 系统。只需几行代码,你就可以自动将用于分类数据的“逐步推理”提示转换为一个更复杂的、针对特定应用的提示。
来自主题: AI技术研报
5532 点击 2025-03-24 09:00
华人学者、斯坦福大学副教授 James Zou 领导的团队提出了 TextGrad ,通过文本自动化“微分”反向传播大语言模型(LLM)文本反馈来优化 AI 系统。只需几行代码,你就可以自动将用于分类数据的“逐步推理”提示转换为一个更复杂的、针对特定应用的提示。
该文章的作者团队来自于斯坦福大学,共同第一作者团队Mert Yuksekgonul,Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang