
重塑AI记忆边界:MemOS开源!时序推理较OpenAI提升159%
重塑AI记忆边界:MemOS开源!时序推理较OpenAI提升159%大模型记忆管理和优化框架是当前各大厂商争相优化的热点方向,MemOS 相比现有 OpenAI 的全局记忆在大模型记忆评测集上呈现出显著的提升,平均准确性提升超过 38.97%,Tokens 的开销进一步降低 60.95%,一举登顶记忆管理的 SOTA 框架,特别是在考验框架时序建模与检索能力的时序推理任务上,提升比例更是达到了 159%,相当震撼!
大模型记忆管理和优化框架是当前各大厂商争相优化的热点方向,MemOS 相比现有 OpenAI 的全局记忆在大模型记忆评测集上呈现出显著的提升,平均准确性提升超过 38.97%,Tokens 的开销进一步降低 60.95%,一举登顶记忆管理的 SOTA 框架,特别是在考验框架时序建模与检索能力的时序推理任务上,提升比例更是达到了 159%,相当震撼!
最近,我的AI交流群和别的一些AI群都炸锅了,话题的焦点是MiniMax-M1
近年来,大型语言模型(LLM)在处理复杂任务方面取得了显著进展,尤其体现在多步推理、工具调用以及多智能体协作等高级应用中。这些能力的提升,往往依赖于模型内部一系列复杂的「思考」过程或 Agentic System 中的 Agent 间频繁信息交互。
1+1等于几?
是的,秘塔AI搜索推出了全新“极速”模型。通过在GPU上进行kernel fusion,以及在CPU上进行动态编译优化,我们在单张H800 GPU上实现了最高400 tokens/秒的响应速度,大部分问题2秒内就能答完。
谷歌又放新大招了,将图像生成常用的“扩散技术”引入语言模型,12秒能生成1万tokens。
在当前大模型推理愈发复杂的时代,如何快速、高效地产生超长文本,成为了模型部署与优化中的一大核心挑战。
自回归模型,首次生成2048×2048分辨率图像!来自Meta、西北大学、新加坡国立大学等机构的研究人员,专门为多模态大语言模型(MLLMs)设计的TokenShuffle,显著减少了计算中的视觉Token数量,提升效率并支持高分辨率图像合成。
就在刚刚,智谱一口气上线并开源了三大类最新的GLM模型:沉思模型GLM-Z1-Rumination 推理模型GLM-Z1-Air 基座模型GLM-4-Air-0414
在大模型迈向推理时代的当下,数学推理能力已成为衡量语言模型智能上限的关键指标。