
多模态大模型存在「内心预警」,无需训练,就能识别越狱攻击
多模态大模型存在「内心预警」,无需训练,就能识别越狱攻击多模态大模型崛起,安全问题紧随其后 近年来,大语言模型(LLMs)的突破式进展,催生了视觉语言大模型(LVLMs)的快速兴起,代表作如 GPT-4V、LLaVA 等。
多模态大模型崛起,安全问题紧随其后 近年来,大语言模型(LLMs)的突破式进展,催生了视觉语言大模型(LVLMs)的快速兴起,代表作如 GPT-4V、LLaVA 等。
当前最强大的视觉语言模型(VLMs)虽然能“看图识物”,但在理解电影方面还不够“聪明”。
尽管大型语言模型(LLMs)和大型视觉 - 语言模型(VLMs)在视频分析和长语境处理方面取得了显著进展,但它们在处理信息密集的数小时长视频时仍显示出局限性。
迈向通用人工智能(AGI)的核心目标之一就是打造能在开放世界中自主探索并持续交互的智能体。随着大语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,智能体已展现出令人瞩目的跨领域任务泛化能力。
当前大型视觉语言模型(LVLMs)存在物体幻觉问题,即会生成图像中不存在的物体描述。
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。
在视觉语言模型(Vision-Language Models,VLMs)取得突破性进展的当下,长视频理解的挑战显得愈发重要。以标准 24 帧率的标清视频为例,仅需数分钟即可产生逾百万的视觉 token,这已远超主流大语言模型 4K-128K 的上下文处理极限。
近年来,随着大型语言模型(LLMs)的快速发展,多模态理解领域取得了前所未有的进步。像 OpenAI、InternVL 和 Qwen-VL 系列这样的最先进的视觉-语言模型(VLMs),在处理复杂的视觉-文本任务时展现了卓越的能力。
幻觉(Hallucination),即生成事实错误或不一致的信息,已成为视觉-语言模型 (VLMs)可靠性面临的核心挑战。随着VLMs在自动驾驶、医疗诊断等关键领域的广泛应用,幻觉问题因其潜在的重大后果而备受关注。
当前,视觉语言模型(VLMs)的能力边界不断被突破,但大多数评测基准仍聚焦于复杂知识推理或专业场景。本文提出全新视角:如果一项能力对人类而言是 “无需思考” 的本能,但对 AI 却是巨大挑战,它是否才是 VLMs 亟待突破的核心瓶颈?