后果真实且残酷!哈佛研究揭示AI如何冲击就业市场
后果真实且残酷!哈佛研究揭示AI如何冲击就业市场两位哈佛学者通过研究6200万份简历和近2亿条招聘职位数据,揭示了AI对就业带来的真实、残酷的冲击:它不是无差别地针对所有人,而是在大量“吞噬”初级岗位,让那些刚刚踏入社会的年轻人,面临着空前陡峭、狭窄的职业起跑线。与此同时,为数众多的普通院校毕业生群体受到的冲击更为显著。
两位哈佛学者通过研究6200万份简历和近2亿条招聘职位数据,揭示了AI对就业带来的真实、残酷的冲击:它不是无差别地针对所有人,而是在大量“吞噬”初级岗位,让那些刚刚踏入社会的年轻人,面临着空前陡峭、狭窄的职业起跑线。与此同时,为数众多的普通院校毕业生群体受到的冲击更为显著。
为此,北大、UC San Diego 和 BeingBeyond 联合提出一种新的方法——Being-VL 的视觉 BPE 路线。Being-VL 的出发点是把这一步后置:先在纯自监督、无 language condition 的设定下,把图像离散化并「分词」,再与文本在同一词表、同一序列中由同一 Transformer 统一建模,从源头缩短跨模态链路并保留视觉结构先验。
讲真,AI生图圈的内卷速度简直离谱。8月底的Nano Banana、9月中的即梦4.0已经把画质和效果卷到了一个新高度,但我还在纠结到底该把谁设为主力工具,因为总觉得他们差点什么:不是出错就是不懂场景。
OpenAI终于官宣了!联手芯片巨头博通下场造AI芯片,预计2029年底部署10GW算力。内部已秘密研发18个月,首颗芯片9个月后量产,AI领域的M1时刻将至。
谷歌下一代旗舰模型Gemini 3未发布便已悄然走红!原因很简单:强,实在是太强了。在国外社交媒体平台𝕏上,一大波网友激动地分享了Gemini 3的内测结果——从曝光的这些案例来看,Gemini 3尤为擅长前端、SVG矢量图生成,而且多模态能力变得更强。
极客公园最近体验了一款叫做 Websets 的 AI 搜索工具。与谷歌搜索不同,Websets 试图理解人类的复杂意图。它并非为日常查询设计,而是专门处理传统搜索引擎难以完成的复杂任务,例如寻找具备特定复合经验的专业人士,或筛选符合多重标准的公司实体。
新加坡时间 10 月 9 日,Zenlayer 于新加坡科技周——云与 AI 基础设施展正式发布 Zenlayer 分布式推理平台(Zenlayer Distributed Inference)。该平台作为一站式 AI 即时部署解决方案,专注于在全球范围内为大规模 AI 推理提供高性能支持。
又一批AI社交公司与产品悄悄「死亡」了。今年9月,一批AI社交公司发布关停或通知,这之中,既包括大模型明星公司、社交公司等中型企业,如阶跃星辰To C产品「冒泡鸭」、Soul旗下的AI应用「异世界回响」等,也包括一批垂直领域的初创产品,如定位AI情感分析的Lumi、由前苹果设计师Jason Yuan创立的情感陪伴应用Dot等。
人工智能真是日新月异。早上看到网友的评论:我们已经 0 天没有吸引注意的 AI 领域新突破了。记得三个月前,OpenAI 官宣了他们的推理模型在国际数学奥林匹克(IMO)竞赛中获得了金牌。
在中国科学院计算技术研究所入选NeurIPS 2025的新论文中,提出了SpaceServe的突破性架构,首次将LLM推理中的P/D分离扩展至多模态场景,通过EPD三阶解耦与「空分复用」,系统性地解决了MLLM推理中的行头阻塞难题。