ChatGPT千亿tokens,干掉麦肯锡5000名顾问
ChatGPT千亿tokens,干掉麦肯锡5000名顾问魔幻啊魔幻。 全球顶级咨询公司麦肯锡,居然收到了OpenAI最近给Tokens消耗大客户颁发的奖牌。 麦肯锡自己还怪自豪的,第一时间就把奖牌po到了领英上。
魔幻啊魔幻。 全球顶级咨询公司麦肯锡,居然收到了OpenAI最近给Tokens消耗大客户颁发的奖牌。 麦肯锡自己还怪自豪的,第一时间就把奖牌po到了领英上。
目前,所有主流 LLM 都有一个固定的上下文窗口(如 200k, 1M tokens)。一旦输入超过这个限制,模型就无法处理。 即使在窗口内,当上下文变得非常长时,模型的性能也会急剧下降,这种现象被称为「上下文腐烂」(Context Rot):模型会「忘记」开头的信息,或者整体推理能力下降。
1.3千万亿,一个令人咂舌的数字。这就是谷歌每月处理的Tokens用量。据谷歌“宣传委员”Logan Kilpatrick透露,这一数据来自谷歌对旗下各平台的内部统计。那么在中文世界里,1.3千万亿Tokens约2.17千万亿汉字。换算成对话量,一本《红楼梦》的字数在70-80万左右,相当于一个月内所有人和谷歌AI聊了近30亿本《红楼梦》的内容。
什么AI应用公司和方向是OpenAI看好的?这不,OpenAI公布了30家Tokens消耗破万亿的“大金主”。榜单按每家公司接入OpenAI API挂名人的姓氏排序,排名不分先后,初创公司多数由联合创始人亲自挂名,而大型企业则由专门的AI部门负责人负责对接。
正所谓“得数据者得天下”,这家央企算是把高质量数据集给玩明白了——超过10万亿tokens的通用大模型语料数据,以及覆盖14个关键行业的专业数据集,总存储量高达350TB!
全球最快的开源大模型来了——速度达到了每秒2000个tokens! 虽然只有320亿参数(32B),吞吐量却是超过典型GPU部署的10倍以上的那种。它就是由阿联酋的穆罕默德·本·扎耶德人工智能大学(MBZUAI)和初创公司G42 AI合作推出的K2 Think。
如果我们的教科书里包含大量的污言秽语,那么我们能学好语言吗?这种荒唐的问题却出现在最先进 ChatGPT 系列模型的学习过程中。
DeepSeek涨价了。 智东西8月23日报道,8月21日,DeepSeek在其公众号官宣了DeepSeek-V3.1的正式发布,还宣布自9月6日起,DeepSeek将执行新价格表,取消了今年2月底推出的夜间优惠,推理与非推理API统一定价,输出价格调整至12元/百万tokens。这一决定,让使用DeepSeek API的最低价格较过去上升了50%。
疑似GPT-5的系统提示词,在GitHub上被曝光了!我们把这份系统提示词里的关键指令梳理成了一个 「用户可见效果 ↔ 内部要求」对照表,大家可以对比看一下
在大语言模型(LLMs)领域,自回归(AR)范式长期占据主导地位,但其逐 token 生成也带来了固有的推理效率瓶颈。此前,谷歌的 Gemini Diffusion 和字节的 Seed Diffusion 以每秒千余 Tokens 的惊人吞吐量,向业界展现了扩散大语言模型(dLLMs)在推理速度上的巨大潜力。