Bug变奖励:AI的小失误,揭开创造力真相!
Bug变奖励:AI的小失误,揭开创造力真相!扩散模型本该只是复制机器,却一次次画出「六指人像」甚至是陌生场景。最新研究发现,AI的「创造力」其实是架构里的副作用。有学者大胆推测人类的灵感或许也是如此。当灵感成了固定公式,人类和AI的差别还有多少?
扩散模型本该只是复制机器,却一次次画出「六指人像」甚至是陌生场景。最新研究发现,AI的「创造力」其实是架构里的副作用。有学者大胆推测人类的灵感或许也是如此。当灵感成了固定公式,人类和AI的差别还有多少?
近年来,NeRF、SDF 与 3D Gaussian Splatting 等方法大放异彩,让 AI 能从图像中恢复出三维世界。但随着相关技术路线的发展与完善,瓶颈问题也随之浮现:
AI自己讲明白论文,还能生成更美观的幻灯片。加州大学圣塔芭芭拉(UCSB)与圣克鲁兹(UCSC)的研究者提出EvoPresent,一个能够自我进化的学术演讲智能体框架,让AI不仅能“讲清楚论文”,还能“讲得好看”。
近期,我们独家观察到,国内两家科技巨头——阿里巴巴和字节跳动——旗下的AI助手通义千问(Qwen)和豆包(Doubao),同时开始内测“记忆功能”。此举被广泛视为对标行业领头羊OpenAI的ChatGPT,标志着国产AI助手正从“即时问答工具”向“长期私人助理”的角色加速演进。
这是《窄播Weekly》的第68期,本期我们关注的商业动态是:OpenAI在今年的DevDay上更清晰地向我们展示了如何构建一个AI时代的超级系统。就像OpenAI的CEO山姆·奥特曼在一档播客节目中所说,ChatGPT上线之后经历了两个关键的「惊喜」时刻,
工业AI生成式设计软件与方案供应商「设序科技」近日完成数千万元Pre B轮融资,投资方为涌铧投资和广发信德,星涵资本担任长期财务顾问。过去一年,公司已连续完成三轮融资,累计金额超亿元。融资资金将用于研发投入和市场推广,包括海外市场推广。
3D 生成正从纯虚拟走向物理真实,现有的 3D 生成方法主要侧重于几何结构与纹理信息,而忽略了基于物理属性的建模。
最近看到一个有趣的现象:很多人对AI生成的内容有一种本能的抗拒,觉得AI正在"污染"互联网,到处都是没有灵魂的机器文字。
构建能够在新环境中、无需任何针对性训练就能执行多样化任务的通用机器人,是机器人学领域一个长期追逐的圣杯。近年来,随着大型语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,许多研究者将希望寄托于视觉 - 语言 - 动作(VLA)模型,期望它们能复刻 LLM 和 VLM 在泛化性上取得的辉煌。
在具身智能领域,视觉 - 语言 - 动作(VLA)大模型正展现出巨大潜力,但仍面临一个关键挑战:当前主流的有监督微调(SFT)训练方式,往往让模型在遇到新环境或任务时容易出错,难以真正做到类人般的泛化