AlphaGo之父找到创造强化学习算法新方法:让AI自己设计
AlphaGo之父找到创造强化学习算法新方法:让AI自己设计强化学习是近来 AI 领域最热门的话题之一,新算法也在不断涌现。
强化学习是近来 AI 领域最热门的话题之一,新算法也在不断涌现。
前脚谢赛宁刚宣告VAE在图像生成领域退役,后脚清华与快手可灵团队也带着无VAE潜在扩散模型SVG来了。
对抗样本(adversarial examples)的迁移性(transferability)—— 在某个模型上生成的对抗样本能够同样误导其他未知模型 —— 被认为是威胁现实黑盒深度学习系统安全的核心因素。尽管现有研究已提出复杂多样的迁移攻击方法,却仍缺乏系统且公平的方法对比分析:(1)针对攻击迁移性,未采用公平超参设置的同类攻击对比分析;(2)针对攻击隐蔽性,缺乏多样指标。
OpenAI完成史上最重要的一次组织架构调整后,紧接着开了一场直播。首次公开了内部研究目标的具体时间表,其中最引人注目的是“在2028年3月实现完全自主的AI研究员”,具体到月份。
刚刚,这样一个消息在 Reddit 上引发热议:硅谷似乎正在从昂贵的闭源模型转向更便宜的开放源替代方案。
火爆只是表象,邀请码没这么厉害。
今天推荐一个 Dense Image Captioning 的最新技术 —— CapRL (Captioning Reinforcement Learning)。CapRL 首次成功将 DeepSeek-R1 的强化学习方法应用到 image captioning 这种开放视觉任务,创新的以实用性重新定义 image captioning 的 reward。
在文化遗产与人工智能的交叉处,有一类问题既美也难:如何让机器「看懂」古希腊的陶器——不仅能识别它的形状或图案,还能推断年代、产地、工坊甚至艺术归属?有研究人员给出了一条实用且富有启发性的答案:把大型多模态模型(MLLM)放在「诊断—补弱—精细化评估」的闭环中训练,并配套一个结构化的评测基准,从而让模型在高度专业化的文化遗产领域表现得更接近专家级能力。
直到我看到 Dedalus Labs 宣布完成 1100 万美元种子轮融资的消息,才意识到有人正在系统性地解决这个问题。这家由 Cathy Di 和 Windsor Nguyen 创立的公司,正在构建一个基础设施层,让开发者能够用 5 行代码就搭建起一个功能完整的 AI agent。这不是夸张的营销话术,而是他们真正在做的事情。
AI大house真来了。