
曾爆火的 InstantID又有了新玩法:风格化图像生成,已开源
曾爆火的 InstantID又有了新玩法:风格化图像生成,已开源风格化图像生成,也常称为风格迁移,其目标是生成与参考图像风格一致的图像。
风格化图像生成,也常称为风格迁移,其目标是生成与参考图像风格一致的图像。
AI 生成工具的偏见何时休?
Diffusion 不仅可以更好地模仿,而且可以进行「创作」。扩散模型(Diffusion Model)是图像生成模型的一种。有别于此前 AI 领域大名鼎鼎的 GAN、VAE 等算法,扩散模型另辟蹊径,其主要思想是一种先对图像增加噪声,再逐步去噪的过程,其中如何去噪还原图像是算法的核心部分。而它的最终算法能够从一张随机的噪声图像中生成图像。
扩散模型凭借其在图像生成方面的出色表现,开启了生成式模型的新纪元。诸如 Stable Diffusion,DALLE,Imagen,SORA 等大模型如雨后春笋般涌现,进一步丰富了生成式 AI 的应用前景。然而,当前的扩散模型在理论上并非完美,鲜有研究关注到采样时间端点处未定义的奇点问题。此外,奇点问题在应用中导致的平均灰度等影响生成图像质量的问题也一直未得到解决。
随着 Sora 的成功发布,视频 DiT 模型得到了大量的关注和讨论。设计稳定的超大规模神经网络一直是视觉生成领域的研究重点。DiT [1] 的成功为图像生成的规模化提供了可能性。
【新智元导读】利用文本生成图片(Text-to-Image, T2I)已经满足不了人们的需要了,近期研究在T2I模型的基础上引入了更多类型的条件来生成图像,本文对这些方法进行了总结综述。
众所周知,开发顶级的文生图(T2I)模型需要大量资源,因此资源有限的个人研究者基本都不可能承担得起,这也成为了 AIGC(人工智能内容生成)社区创新的一大阻碍。同时随着时间的推移,AIGC 社区又能获得持续更新的、更高质量的数据集和更先进的算法。
有人表示:「等待已久的 AI 图像创建功能终于迎来了图层!」
龙年刚一开年,OpenAI又打开了新局面,这次火的是文生视频。2月16日凌晨,OpenAI发布了文生视频大模型Sora。Sora能够根据文本提示创建详细的视频、扩展现有视频中的叙述以及从静态图像生成场景。
简单粗暴的理解,就是语言能力足够强大之后,它带来的泛化能力直接可以学习图像视频数据和它体现出的模式,然后还可以直接用学习来的图像生成模型最能理解的方式,给这些利用了引擎等已有的强大而成熟的视频生成技术的视觉模型模块下指令,最终生成我们看到的逼真而强大的对物理世界体现出“理解”的视频。