
打破跨模态干扰,快手东北大学联合提出统一多模态框架,横扫多模态检索基准
打破跨模态干扰,快手东北大学联合提出统一多模态框架,横扫多模态检索基准多模态检索是信息理解与获取的关键技术,但其中的跨模态干扰问题一直是一大难题。
多模态检索是信息理解与获取的关键技术,但其中的跨模态干扰问题一直是一大难题。
就在刚刚,智源研究员联合多所高校开放三款向量模型,以大优势登顶多项测试基准。其中,BGE-Code-v1直接击穿代码检索天花板,百万行级代码库再也不用怕了!
智源联手多所顶尖高校发布的多模态向量模型BGE-VL,重塑了AI检索领域的游戏规则。它凭借独创的MegaPairs合成数据技术,在图文检索、组合图像检索等多项任务中,横扫各大基准刷新SOTA。
BGE 系列模型自发布以来广受社区好评。近日,智源研究院联合多所高校开发了多模态向量模型 BGE-VL,进一步扩充了原有生态体系。
本文构建了新的多轮组合图像检索数据集和评测基准FashionMT。其特点包括:(1)回溯性:每轮修改文本可能涉及历史参考图像信息(如保留特定属性),要求算法回溯利用多轮历史信息;(2)多样化:FashionMT包含的电商图像数量和类别分别是MT FashionIQ的14倍和30倍,且交互轮次数量接近其27倍,提供了丰富的多模态检索场景。
多模态检索增强生成(mRAG)也有o1思考推理那味儿了! 阿里通义实验室新研究推出自适应规划的多模态检索智能体。 名叫OmniSearch,它能模拟人类解决问题的思维方式,将复杂问题逐步拆解进行智能检索规划。
Cisco 曾在 2018 年做过测算,全球已经有超过 75% 的数据是视频内容,互联网视频数据流量超过 50%。