
人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破
人机协同筛出2600万条数据,七项基准全部SOTA,昆仑万维开源奖励模型再迎新突破大语言模型(LLM)以生成能力强而著称,但如何能让它「听话」,是一门很深的学问。 基于人类反馈的强化学习(RLHF)就是用来解决这个问题的,其中的奖励模型 (Reward Model, RM)扮演着重要的裁判作用,它专门负责给 LLM 生成的内容打分,告诉模型什么是好,什么是不好,可以保证大模型的「三观」正确。
大语言模型(LLM)以生成能力强而著称,但如何能让它「听话」,是一门很深的学问。 基于人类反馈的强化学习(RLHF)就是用来解决这个问题的,其中的奖励模型 (Reward Model, RM)扮演着重要的裁判作用,它专门负责给 LLM 生成的内容打分,告诉模型什么是好,什么是不好,可以保证大模型的「三观」正确。
DeepSeek-R2,终于要来了?大模型竞技场秘密上线了一个叫steve的神秘模型,在对话中透露自己来自DeepSeek。不过,网友们并不满足于知道steve的厂商,开始讨论起了steve的具体身份。
当全球目光都聚焦在OpenAI、Anthropic、谷歌、Meta等明星AI公司时,真正靠大模型落地大规模盈利的,却是一家相对不太知名的公司——Palantir。
第一难当。AI变革遇上IPO盛宴,港股掀起一波资本巨浪。
随着 AI Agent 技术的快速发展,业界许多企业开始在 Agent 方向进行深层次探索,而不仅仅是停留在“大模型 + 工具调用”的简单应用上。
人工智能(AI),如果可以像人类一样“思考”,或许能够帮助我们理解人类的思维方式,尤其是不同心理状态(如抑郁或焦虑)的人群如何做出决策,进而为人类健康研究提供一个新视角。
DeepMind新研究揭示了当与推理无关的想法,被直接注入到模型的推理过程中时,它们却难以恢复,而且越大的模型越难恢复。
最近网上出现了一些很有趣的声音——"提示词已死"、"写提示词把自己写死了",这些文章认为随着模型变得越来越智能,精心设计提示词的时代已经过去了。但芝加哥大学的最新研究却给出了完全相反的结论:prompt不仅没有死,反而是理解大模型最重要的科学工具。
最近,关于大模型推理的测试时间扩展(Test time scaling law )的探索不断涌现出新的范式,包括① 结构化搜索结(如 MCTS),② 过程奖励模型(Process Reward Model )+ PPO,③ 可验证奖励 (Verifiable Reward)+ GRPO(DeepSeek R1)。
当推理链从3步延伸到50+步,幻觉率暴增10倍;反思节点也束手无策。