
大模型AI应用,正在企业级赛道迅猛爆发
大模型AI应用,正在企业级赛道迅猛爆发大模型AI应用在消费级市场的爆发,已引发各界广泛关注。
大模型AI应用在消费级市场的爆发,已引发各界广泛关注。
从 2023 年的 Sora 到如今的可灵、Vidu、通义万相,AIGC 生成式技术的魔法席卷全球,打开了 AI 应用落地的大门。
本周三,知名 AI 创业公司,曾发布「全球首个 AI 软件工程师」的 Cognition AI 开源了一款使用强化学习,用于编写 CUDA 内核的大模型 Kevin-32B。
随着Gemini、GPT-4o等商业大模型把基于文本的图像编辑这一任务再次推向高峰,获取更高质量的编辑数据用于训练、以及训练更大参数量的模型似乎成了提高图像编辑性能的唯一出路。然而浙大哈佛这个团队却反其道而行之,仅用以往工作0.1%的数据量(获取自公开数据集)和1%的训练参数,以极低成本实现了图像的高质量编辑,在一些方面媲美甚至超越商业大模型!
随着大模型加速渗透核心行业,其安全可控性正从技术议题升级为产业落地的先决条件。
Mixture-of-Experts(MoE)在推理时仅激活每个 token 所需的一小部分专家,凭借其稀疏激活的特点,已成为当前 LLM 中的主流架构。然而,MoE 虽然显著降低了推理时的计算量,但整体参数规模依然大于同等性能的 Dense 模型,因此在显存资源极为受限的端侧部署场景中,仍然面临较大挑战。
“活过眼前的数据治理‘脏活累活’,未来五年,这个赛道遍布机遇。”深耕半导体赛道的喆塔科技创始人兼 CEO 赵文政对这个方向充满信心,他如今正在半导体软件领域引入 AI 技术。
随着 Deepseek 等强推理模型的成功,强化学习在大语言模型训练中越来越重要,但在视频生成领域缺少探索。复旦大学等机构将强化学习引入到视频生成领域,经过强化学习优化的视频生成模型,生成效果更加自然流畅,更加合理。并且分别在 VDC(Video Detailed Captioning)[1] 和 VBench [2] 两大国际权威榜单中斩获第一。
大型语言模型(LLMs)在上下文知识理解方面取得了令人瞩目的成功。
你以为大模型已经能轻松“上网冲浪”了?