
让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%
让大模型“瘦身”90%!清华&哈工大提出极限压缩方案:1bit量化,能力同时保留83%对大模型进行量化、剪枝等压缩操作,是部署时最常见不过的一环了。
对大模型进行量化、剪枝等压缩操作,是部署时最常见不过的一环了。
近期,清华大学和哈尔滨工业大学联合发布了一篇论文:把大模型压缩到 1.0073 个比特时,仍然能使其保持约 83% 的性能!
继 2023 年 1 月 YOLOv8 正式发布一年多以后,YOLOv9 终于来了!
造大模型的成本,又被打下来了!这次是数据量狂砍95%的那种。陈丹琦团队最新提出大模型降本大法——数据选择算法LESS, 只筛选出与任务最相关5%数据来进行指令微调,效果比用整个数据集还要好。
谷歌&南加大推出最新研究“自我发现”(Self-Discover),重新定义了大模型推理范式。与已成行业标准的思维链(CoT)相比,新方法不仅让模型在面对复杂任务时表现更佳,还把同等效果下的推理成本压缩至1/40。
现有的语义分割技术在评估指标、损失函数等设计上都存在缺陷,研究人员针对相关缺陷设计了全新的损失函数、评估指标和基准,在多个应用场景下展现了更高的准确性和校准性。
最近,谷歌的一篇论文在 X 等社交媒体平台上引发了一些争议。
来自UCLA的华人团队提出一种全新的LLM自我对弈系统,能够让LLM自我合成数据,自我微调提升性能,甚至超过了用GPT-4作为专家模型指导的效果。
不用图像,只用文本就能训练出视觉概念表征?用写代码的方式读懂画面,形状、物体、场景都能懂!
使用LLM生成海量任务的文本数据,无需人工标注即可大幅提升文本嵌入的适用度,只需1000训练步即可轻松扩展到100种语言。