
无需训练实现价值观实时动态对齐:上交开源价值观对齐方法OPO,闭源与开源大模型均适用
无需训练实现价值观实时动态对齐:上交开源价值观对齐方法OPO,闭源与开源大模型均适用OPO 无需训练即可实现实时动态对齐,而且因其即插即用的特性,适用于所有的开源与闭源大模型。
OPO 无需训练即可实现实时动态对齐,而且因其即插即用的特性,适用于所有的开源与闭源大模型。
复旦团队进一步挖掘 RLHF 的潜力,重点关注奖励模型(Reward Model)在面对实际应用挑战时的表现和优化途径。
ChatGPT、OpenAI这两个名字无疑是2023年科技圈最为炙手可热的存在,但投入AI大模型赛道的显然远远不止OpenAI一家,例如谷歌有Gemini、Meta有开源的Llama 2、亚马逊也有Titan。
“AI会塑造现世的魔王,而被魔王上身的人自己也不知道”。陈伟星如是形容困在“信息茧房”中的人。
2023年,以ChatGPT为代表的大型语言模型(LLM)集中爆发,让各界都看到人工智能全新的可能性。但期冀总是与担忧并存,随着大模型在各领域的应用深化,已经沉寂许久的“AI威胁论”又开始甚嚣尘上。在漫长的技术史中,技术恐惧如同摆脱不了的阴影,总是与技术发展随行。
多模态技术是 AI 多样化场景应用的重要基础,多模态大模型(MLLM)展现出了优秀的多模态信息理解和推理能力,正成为人工智能研究的前沿热点。上周,谷歌发布 AI 大模型 Gemini,据称其性能在多模态任务上已全面超越 OpenAI 的 GPT-4V,再次引发行业的广泛关注和热议。
大模型的效果好不好,有时候对齐调优很关键。但近来很多研究开始探索无微调的方法,艾伦人工智能研究所和华盛顿大学的研究者用「免调优」对齐新方法超越了使用监督调优(SFT)和人类反馈强化学习(RLHF)的 LLM 性能。
并非所有人都熟知如何与 LLM 进行高效交流。 一种方案是,人向模型对齐。于是有了 「Prompt工程师」这一岗位,专门撰写适配 LLM 的 Prompt,从而让模型能够更好地生成内容。
评估大模型对齐表现最高效的方式是?在生成式AI趋势里,让大模型回答和人类价值(意图)一致非常重要,也就是业内常说的对齐(Alignment)。
通用模型时代下,当今和未来的前沿AI系统如何与人类意图对齐?通往AGI的道路上,AI Alignment(AI对齐)是安全打开 “潘多拉魔盒” 的黄金密钥。