
超越DeepSeek GRPO的关键RL算法,字节、清华AIR开源DAPO
超越DeepSeek GRPO的关键RL算法,字节、清华AIR开源DAPODeepSeek 提出的 GRPO 可以极大提升 LLM 的强化学习效率,不过其论文中似乎还缺少一些关键细节,让人难以复现出大规模和工业级的强化学习系统。
DeepSeek 提出的 GRPO 可以极大提升 LLM 的强化学习效率,不过其论文中似乎还缺少一些关键细节,让人难以复现出大规模和工业级的强化学习系统。
没有任何冷启动数据,7B 参数模型能单纯通过强化学习学会玩数独吗?
在面对复杂的推理任务时,SFT往往让大模型显得力不从心。最近,CMU等机构的华人团队提出了「批判性微调」(CFT)方法,仅在 50K 样本上训练,就在大多数基准测试中优于使用超过200万个样本的强化学习方法。
见识过32B的QwQ追平671的DeepSeek R1后——刚刚,7B的DeepSeek蒸馏Qwen模型超越o1又是怎么一回事?新方法LADDER,通过递归问题分解实现AI模型的自我改进,同时不需要人工标注数据。
他们为ChatGPT/AlphaGo奠定基石
强化学习先驱 Andrew Barto 与 Richard Sutton 获得今年的 ACM 图灵奖。
基于内置思维链的思考方法为解决多轮会话中存在的问题提供了研究方向。按照思考方法收集训练数据集,通过有监督学习微调大语言模型;训练一个一致性奖励模型,并将该模型用作奖励函数,以使用强化学习来微调大语言模型。结果大语言模型的推理能力和计划能力,以及执行计划的能力得到了增强。
Kimi未来还能够翻盘吗? 从公司发展路径上来看,并非没有可能。 作为曾经对OpenAI技术跟随最快的公司,Kimi在去年做出了Kimi探索版、k0-math等多个跟随OpenAI技术的模型,而杨植麟本人也在采访中,表示大模型的未来不仅在于强化学习,还在于多模态能力。 这一点似乎也与OpenAI类似。
本文深入解析一项开创性研究——"Logic-RL: Unleashing LLM Reasoning with Rule-Based Reinforcement Learning",该研究通过基于规则的强化学习技术显著提升了语言模型的推理能力。微软亚洲的研究团队受DeepSeek-R1成功经验的启发,利用结构化的逻辑谜题作为训练场,为模型创建了一个可以系统学习和改进推理技能的环境。
当 Scaling Law 在触顶边界徘徊之时,强化学习为构建更强大的大模型开辟出了一条新范式。