
Adam获时间检验奖!清华揭示保辛动力学本质,提出全新RAD优化器
Adam获时间检验奖!清华揭示保辛动力学本质,提出全新RAD优化器Adam优化器是深度学习中常用的优化算法,但其性能背后的理论解释一直不完善。近日,来自清华大学的团队提出了RAD优化器,扩展了Adam的理论基础,提升了训练稳定性。实验显示RAD在多种强化学习任务中表现优于Adam。
Adam优化器是深度学习中常用的优化算法,但其性能背后的理论解释一直不完善。近日,来自清华大学的团队提出了RAD优化器,扩展了Adam的理论基础,提升了训练稳定性。实验显示RAD在多种强化学习任务中表现优于Adam。
OpenAI 的 o1 系列和 DeepSeek-R1 的成功充分证明,大规模强化学习已成为一种极为有效的方法,能够激发大型语言模型(LLM) 的复杂推理行为并显著提升其能力。
只靠模型尺寸变大已经不行了?大语言模型(LLM)推理需要强化学习(RL)来「加 buff」。
AI的野心从未如此大胆!新创公司Mechanize目标直指「全面自动化所有工作」和「经济无人化」,瞄准全球60万亿美元的劳动力市场。从虚拟工作环境到强化学习,Mechanize计划用AI智能体取代人类岗位,引发巨大争议。
DeepSeek-R1 展示了强化学习在提升模型推理能力方面的巨大潜力,尤其是在无需人工标注推理过程的设定下,模型可以学习到如何更合理地组织回答。然而,这类模型缺乏对外部数据源的实时访问能力,一旦训练语料中不存在某些关键信息,推理过程往往会因知识缺失而失败。
本文对DeepMind两位泰斗级科学家David Silver和Richard Sutton的重磅论文《Welcome to the Era of Experience》进行了深度解读,我将其视为AI发展方向的一份战略瞭望图。
当前,强化学习(RL)方法在最近模型的推理任务上取得了显著的改进,比如 DeepSeek-R1、Kimi K1.5,显示了将 RL 直接用于基础模型可以取得媲美 OpenAI o1 的性能不过,基于 RL 的后训练进展主要受限于自回归的大语言模型(LLM),它们通过从左到右的序列推理来运行。
强化学习之父Richard Sutton和DeepMind强化学习副总裁David Silver对我们发出了当头棒喝:如今,人类已经由数据时代踏入经验时代。通往ASI之路要靠RL,而非人类数据!
o3编码直逼全球TOP 200人类选手,却存在一个致命问题:幻觉率高达33%,是o1的两倍。Ai2科学家直指,RL过度优化成硬伤。
还在用搜索和规则训练AI游戏?现在直接「看回放」学打宝可梦了!德州大学奥斯汀分校的研究团队用Transformer和离线强化学习打造出一个智能体,不靠规则、没用启发式算法,纯靠47.5万场人类对战回放训练出来,居然打上了Pokémon Showdown全球前10%!