X上63万人围观的Traning-Free GRPO:把GRPO搬进上下文空间学习
X上63万人围观的Traning-Free GRPO:把GRPO搬进上下文空间学习年初的 DeepSeek-R1,带来了大模型强化学习(RL)的火爆。无论是数学推理、工具调用,还是多智能体协作,GRPO(Group Relative Policy Optimization)都成了最常见的 RL 算法。
年初的 DeepSeek-R1,带来了大模型强化学习(RL)的火爆。无论是数学推理、工具调用,还是多智能体协作,GRPO(Group Relative Policy Optimization)都成了最常见的 RL 算法。
在人工智能的广阔世界里,我们早已习惯了LLM智能体在各种任务中大放异彩。但有没有那么一瞬间,你觉得这些AI“牛马”还是缺了点什么?
来自硅谷一线 AI 创业者的数据:95% 的 AI Agent 在生产环境都部署失败了。 「不是因为模型本身不够智能,而是因为围绕它们搭建的脚手架,上下文工程、安全性、记忆设计都还远没有到位。」 「大多数创始人以为自己在打造 AI 产品,但实际上他们构建的是上下文选择系统。」
不再依赖人工设计,让模型真正学会管理记忆。
在技术飞速更新迭代的今天,每隔一段时间就会出现「XX 已死」的论调。「搜索已死」、「Prompt 已死」的余音未散,如今矛头又直指 RAG。
想象这样一个场景: 一个AI智能体在帮你处理邮件,一封看似正常的邮件里,却用一张图片的伪装暗藏指令。AI在读取图片时被悄然感染,之后它发给其他AI或人类的所有信息里,都可能携带上这个病毒,导致更大范围的感染和信息泄露。
近日,来自阿联酋穆罕默德·本·扎耶德人工智能大学 MBZUAI 和保加利亚 INSAIT 研究所的研究人员发现一个针对大模型单次推理的“法诺式准确率上限”,借此不仅揭示了单次生成范式的根本性脆弱点,也揭示了“准确率悬崖”这一现象。
搜索在变,交易在变,归因在变——AI 正在重写电商的底层逻辑。从“人找货”到“智能体替你理解、推荐、比价、下单”,消费者与平台之间的关系被彻底改写。过去二十年,互联网商业的三大支柱是:广告、订阅与电商。
美团LongCat团队发布了当前高度贴近真实生活场景、面向复杂问题的大模型智能体评测基准——VitaBench(Versatile Interactive Tasks Benchmark)。VitaBench以外卖点餐、餐厅就餐、旅游出行三大高频生活场景为典型载体,构建了一个包含66个工具的交互式评测环境,并设计了跨场景综合任务。
在近日的一次访谈中,Andrej Karpathy深入探讨了AGI、智能体与AI未来十年的走向。他认为当前的「智能体」仍处早期阶段,强化学习虽不完美,却是目前的最优解。他预测未来10年的AI架构仍然可能是类似Transformer的巨大神经网络。