JoyAgent这个 AI 工作流工具的路子对了
JoyAgent这个 AI 工作流工具的路子对了可能很多人还不知道,京东云早就做了类似字节 Coze 这样的产品,并且已经 100% 开源。目前市面上同类产品有不少,京东云 JoyAgent 主打的一个亮点就是它在京东内部的场景中验证过,更贴合企业严肃商业场景的需求。今天,我做个记录,也把操作流程和经验分享给大家。
可能很多人还不知道,京东云早就做了类似字节 Coze 这样的产品,并且已经 100% 开源。目前市面上同类产品有不少,京东云 JoyAgent 主打的一个亮点就是它在京东内部的场景中验证过,更贴合企业严肃商业场景的需求。今天,我做个记录,也把操作流程和经验分享给大家。
当今的 AI 智能体(Agent)越来越强大,尤其是像 VLM(视觉-语言模型)这样能「看懂」世界的智能体。但研究者发现一个大问题:相比于只处理文本的 LLM 智能体,VLM 智能体在面对复杂的视觉任务时,常常表现得像一个「莽撞的执行者」,而不是一个「深思熟虑的思考者」。
AI 编程早已成为许多开发者日常生产中的一环,而随着代码生成的速度和规模达到一定程度,一个日益重要的问题是,支撑这些 AI 运转的开发工具和基础设施正在成为新的瓶颈。
在机器人与智能体领域,一个老大难问题是:当你让机器人 “把黄碗放进白色空篮子” 或 “从微波炉里把牛奶取出来放到餐桌上” 时,它不仅要看懂环境,更要解释指令、规划路径 / 可操作区域,并把这些推理落实为准确的动作。
大型语言模型(LLM)本身很强大,但知识是静态的,有时会“胡说八道”。为了解决这个问题,我们可以让它去外部知识库(比如维基百科、搜索引擎)里“检索”信息,这就是所谓的“检索增强生成”(RAG)。
斯坦福等新框架,用在线强化学习让智能体系统“以小搏大”,领先GPT-4o—— AgentFlow,是一种能够在线优化智能体系统的新范式,可以持续提升智能体系统对于复杂问题的推理能力。
在 AI 时代,最赚钱的可能不是那些会写代码的人,而是那些能把专业经验「产品化」的人。大量专业人士手里握着宝贵的行业 know-how,却找不到一个合适的方式把它变成持续收入。直到我看到 MuleRun,才发现有人正在尝试打破这个困局——让不懂代码的专业人士,也能把自己的工作流变成可交易的「商品」。
阿里巴巴与上海交通大学 EPIC Lab 联合提出 Socratic-Zero,一个完全无外部数据依赖的自主推理训练框架。该方法仅从 100 个种子问题出发,通过三个智能体的协同进化,自动生成高质量、难度自适应的课程,并持续提升模型推理能力。
近日,Zen7 Labs正式提出DePA(Decentralized Payment Agent,去中心化支付智能体)概念,并率先在GitHub 上开源其核心产品Zen7 Payment Agent。Zen7 Labs 是一家专注于智能计算与 Agent 技术创新的国际化团队
随着 AI 能力不断增强,它正日益融入我们的工作与生活。我们也更愿意给予它更多「授权」,让它主动去搜集信息、分析证据、做出判断。搜索智能体正是 AI 触达人类世界迈出的重要一步。