上交×蚂蚁发布 DiagGym:以世界模型驱动交互式医学诊断智能体
上交×蚂蚁发布 DiagGym:以世界模型驱动交互式医学诊断智能体临床诊断并非一次性的「快照」,而是一场动态交互、不断「探案」的推理过程。然而,当下的大模型大多基于静态数据训练,难以掌握真实诊疗中充满不确定性的多轮决策轨迹。如何让AI学会「追问」、选择检查,并一步步抽丝剥茧,迈向正确诊断?
临床诊断并非一次性的「快照」,而是一场动态交互、不断「探案」的推理过程。然而,当下的大模型大多基于静态数据训练,难以掌握真实诊疗中充满不确定性的多轮决策轨迹。如何让AI学会「追问」、选择检查,并一步步抽丝剥茧,迈向正确诊断?
你是否曾为搭建具身仿真环境耗费数周学习却效果寥寥? 是否因人工采集海量交互数据需要高昂成本而望而却步? 又是否因找不到足够丰富真实的开放场景让你的智能体难以施展拳脚?
上周 Kimi K2 Thinking 发布,开源模型打败 OpenAI 和 Anthropic,让它社交媒体卷起不小的声浪,网友们都在说它厉害,我们也实测了一波,在智能体、代码和写作能力上确实进步明
AI 产业的两大核心趋势正并行发展:基础大模型的能力持续突破,而 AI Agent 的产业化落地也在全面提速。Capgemini 于 2025 年 4 月发布的一项覆盖 14 国 1500 名企业高管的调研显示[1],已有 37% 的受访组织启动或实施 AI Agent 项目,另有高达 61 %的组织将在一年内跟进部署或进行探索,印证了该趋势的全球共识。
LLM Agent 正以前所未有的速度发展,从网页浏览、软件开发到具身控制,其强大的自主能力令人瞩目。然而,繁荣的背后也带来了研究的「碎片化」和能力的「天花板」:多数 Agent 在可靠规划、长期记忆、海量工具管理和多智能体协调等方面仍显稚嫩,整个领域仿佛一片广袤却缺乏地图的丛林。
现有的LLM智能体训练框架都是针对单智能体的,多智能体的“群体强化”仍是一个亟须解决的问题。为了解决这一领域的研究痛点,来自UCSD和英特尔的研究人员,提出了新的提出通用化多智能体强化学习框架——PettingLLMs。支持任意组合的多个LLM一起训练。
机器之心报道 编辑:Panda 刚刚,OpenHands 开发团队发布了一篇新论文,正式宣布广受欢迎的软件开发智能体框架 OpenHands (GitHub star 已超 6.4 万)中的智能体组件
今年是 AI 大模型的落地关键年。大模型技术在快速进步,但行业落地仍面临三大痛点:开发门槛高、场景碎片化、端侧能力有限。结合 AI 能力与云计算,在 CGC2025 大会上,华为云提出的 Versatile 智能体平台与 CloudDevice 云终端协同,正致力于破解这些难题。
智源研究院(BAAI)、Spin Matrix、乐聚机器人与新加坡南洋理工大学等联合提出了一个全新的终身记忆系统——RoboBrain-Memory。RoboBrain-Memory是全球范围内首个专为全双工、全模态模型设计的终身记忆系统,旨在解决具身智能体在真实世界的复杂交互问题,不仅支持实时音视频中多用户身份识别与关系理解,还能动态维护个体档案与社会关系图谱,从而实现类人的长期个性化交互。
本文来自于香港中文大学 MMLab 和 vivo AI Lab,其中论文第一作者肖涵,主要研究方向为多模态大模型和智能体学习,合作作者王国志,研究方向为多模态大模型和 Agent 强化学习。项目 le