AI资讯新闻榜单内容搜索-检索增强

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 检索增强
迎接「万物皆可RAG」时代:最新综述展示50多种多模态组合的巨大待探索空间

迎接「万物皆可RAG」时代:最新综述展示50多种多模态组合的巨大待探索空间

迎接「万物皆可RAG」时代:最新综述展示50多种多模态组合的巨大待探索空间

大模型最广泛的应用如 ChatGPT、Deepseek、千问、豆包、Gemini 等通常会连接互联网进行检索增强生成(RAG)来产生用户问题的答案。随着多模态大模型(MLLMs)的崛起,大模型的主流技术之一 RAG 迅速向多模态发展,形成多模态检索增强生成(MM-RAG)这个新兴领域。ChatGPT、千问、豆包、Gemini 都开始允许用户提供文字、图片等多种模态的输入。

来自主题: AI技术研报
6033 点击    2025-12-03 09:54
为什么记忆成为下一代 AI 的「核心变量」 | GAIR Live 20

为什么记忆成为下一代 AI 的「核心变量」 | GAIR Live 20

为什么记忆成为下一代 AI 的「核心变量」 | GAIR Live 20

人工智能在过去的十年中,以惊人的速度革新了信息处理和内容生成的方式。然而,无论是大语言模型(LLM)本体,还是基于检索增强生成(RAG)的系统,在实际应用中都暴露出了一个深层的局限性:缺乏跨越时间的、可演化的、个性化的“记忆”。它们擅长瞬时推理,却难以实现持续积累经验、反思历史、乃至真正像人一样成长的目标。

来自主题: AI技术研报
7617 点击    2025-11-29 09:56
与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

与DeepSeek-OCR不谋而合,NeurIPS论文提出让LLM像人一样读长文本

在处理短文本时,大语言模型(LLM)已经表现出惊人的理解和生成能力。但现实世界中的许多任务 —— 如长文档理解、复杂问答、检索增强生成(RAG)等 —— 都需要模型处理成千上万甚至几十万长度的上下文。

来自主题: AI技术研报
6256 点击    2025-11-10 15:12
最新Agentic Search综述,RL让Agent自主检索,RAG逐渐成为过去式

最新Agentic Search综述,RL让Agent自主检索,RAG逐渐成为过去式

最新Agentic Search综述,RL让Agent自主检索,RAG逐渐成为过去式

大型语言模型(LLM)本身很强大,但知识是静态的,有时会“胡说八道”。为了解决这个问题,我们可以让它去外部知识库(比如维基百科、搜索引擎)里“检索”信息,这就是所谓的“检索增强生成”(RAG)。

来自主题: AI资讯
6598 点击    2025-10-25 14:09
EMNLP 2025 | CARE:无需外部工具,让大模型原生检索增强推理实现上下文高保真

EMNLP 2025 | CARE:无需外部工具,让大模型原生检索增强推理实现上下文高保真

EMNLP 2025 | CARE:无需外部工具,让大模型原生检索增强推理实现上下文高保真

近日,来自 MetaGPT、蒙特利尔大学和 Mila 研究所、麦吉尔大学、耶鲁大学等机构的研究团队发布 CARE 框架,一个新颖的原生检索增强推理框架,教会 LLM 将推理过程中的上下文事实与模型自身的检索能力有机结合起来。该框架现已全面开源,包括训练数据集、训练代码、模型 checkpoints 和评估代码,为社区提供一套完整的、可复现工作。

来自主题: AI技术研报
7539 点击    2025-10-07 22:10
腾讯优图重磅开源Youtu-GraphRAG,实现图检索增强技术新突破

腾讯优图重磅开源Youtu-GraphRAG,实现图检索增强技术新突破

腾讯优图重磅开源Youtu-GraphRAG,实现图检索增强技术新突破

图检索增强生成(GraphRAG)已成为大模型解决复杂领域知识问答的重要解决方案之一。然而,当前学界和开源界的方案都面临着三大关键痛点: 开销巨大:通过 LLM 构建图谱及社区,Token 消耗大,耗

来自主题: AI技术研报
8701 点击    2025-09-14 10:45
告别错误累计与噪声干扰,EviNote-RAG 开启 RAG 新范式

告别错误累计与噪声干扰,EviNote-RAG 开启 RAG 新范式

告别错误累计与噪声干扰,EviNote-RAG 开启 RAG 新范式

在检索增强生成(RAG)飞速发展的当下,研究者们面临的最大困境并非「生成」,而是「稳定」。

来自主题: AI技术研报
8050 点击    2025-09-12 11:05
从第一性原理出发的RAG推理新范式来了,蚂蚁DIVER登顶权威基准

从第一性原理出发的RAG推理新范式来了,蚂蚁DIVER登顶权威基准

从第一性原理出发的RAG推理新范式来了,蚂蚁DIVER登顶权威基准

在当前由大语言模型(LLM)驱动的技术范式中,检索增强生成(RAG)已成为提升模型知识能力与缓解「幻觉」的核心技术。然而,现有 RAG 系统在面对需多步逻辑推理任务时仍存在显著局限,具体挑战如下:

来自主题: AI技术研报
9467 点击    2025-09-10 11:07
Meta超级智能实验室首篇论文:重新定义RAG

Meta超级智能实验室首篇论文:重新定义RAG

Meta超级智能实验室首篇论文:重新定义RAG

Meta超级智能实验室的首篇论文,来了—— 提出了一个名为REFRAG的高效解码框架,重新定义了RAG(检索增强生成),最高可将首字生成延迟(TTFT)加速30倍。

来自主题: AI技术研报
8548 点击    2025-09-09 13:09
超越RAG和DAPT!华人团队新研究引热议:即插即用、无需改变原参即可让模型化身领域专家

超越RAG和DAPT!华人团队新研究引热议:即插即用、无需改变原参即可让模型化身领域专家

超越RAG和DAPT!华人团队新研究引热议:即插即用、无需改变原参即可让模型化身领域专家

一个小解码器让所有模型当上领域专家!华人团队新研究正在引起热议。 他们提出了一种比目前业界主流采用的DAPT(领域自适应预训练)和RAG(检索增强生成)更方便、且成本更低的方法。

来自主题: AI资讯
8510 点击    2025-08-19 11:01