
无需人工标注!AI自生成训练数据,靠「演绎-归纳-溯因」解锁推理能力
无需人工标注!AI自生成训练数据,靠「演绎-归纳-溯因」解锁推理能力新加坡国立大学等机构的研究者们通过元能力对齐的训练框架,模仿人类推理的心理学原理,将演绎、归纳与溯因能力融入模型训练。实验结果显示,这一方法不仅提升了模型在数学与编程任务上的性能,还展现出跨领域的可扩展性。
新加坡国立大学等机构的研究者们通过元能力对齐的训练框架,模仿人类推理的心理学原理,将演绎、归纳与溯因能力融入模型训练。实验结果显示,这一方法不仅提升了模型在数学与编程任务上的性能,还展现出跨领域的可扩展性。
杯子在我的左边还是右边?
在多智能体AI系统中,一旦任务失败,开发者常陷入「谁错了、错在哪」的谜团。PSU、杜克大学与谷歌DeepMind等机构首次提出「自动化失败归因」,发布Who&When数据集,探索三种归因方法,揭示该问题的复杂性与挑战性。
生成式AGI已经颠覆了人们的生活,但AI工具并没有随着用户使用场景的融合而整合。各个赛道的头部玩家依靠独家的数据库发展模型,现有算力和数据量难以支撑多模态和跨业务领域拓展,急需形成用户粘性的市场竞争也使得AI的生成稳定性被优先考虑。
随着大语言模型 (LLM) 的出现,扩展 Transformer 架构已被视为彻底改变现有 AI 格局并在众多不同任务中取得最佳性能的有利途径。因此,无论是在工业界还是学术界,探索如何扩展 Transformer 模型日益成为一种趋势。
在过去的一周,这一方向的进展尤其丰富。有人发现,几篇关于「让 LLM(或智能体)学会自我训练」的论文在 arXiv 上集中出现,其中甚至包括受「哥德尔机」构想启发而提出的「达尔文哥德尔机」。或许,AI 模型的自我进化能力正在加速提升。
MiniMax即将发布代号M+的文本推理模型,其表现将影响公司未来竞争力。面对DeepSeek R1的冲击,MiniMax采取国内C端不接入、海外接入的策略,并推出类Manus产品MiniMax Agent。公司通过品牌拆分(海螺AI更名)、纯API商业模式拓展市场,语音模型商业化效果显著,但未进入“基模五强”名单。新推理模型或成其保持行业地位的关键。
原生1bit大模型BitNet b1.58 2B4T再升级!微软公布BitNet v2,性能几乎0损失,而占用内存和计算成本显著降低。
推理模型常常表现出类似自我反思的行为,但问题是——这些行为是否真的能有效探索新策略呢?
嗨大家好!假期愉快! 5月29日,黑森林实验室发布了 FLUX.1 Kontext,目标是通过一个统一的框架处理多种图像任务,解决现有模型在多轮编辑中的一些关键痛点。