全球首个人形机器人通用视觉感知系统,Humanoid Occupancy建立多模态环境理解新范式
全球首个人形机器人通用视觉感知系统,Humanoid Occupancy建立多模态环境理解新范式凭借类人化的结构设计与运动模式,人形机器人被公认为最具潜力融入人类环境的通用型机器人。其核心任务涵盖操作 (manipulation)、移动 (locomotion) 与导航 (navigation) 三大领域,而这些任务的高效完成,均以机器人对自身所处环境的全面精准理解为前提。
凭借类人化的结构设计与运动模式,人形机器人被公认为最具潜力融入人类环境的通用型机器人。其核心任务涵盖操作 (manipulation)、移动 (locomotion) 与导航 (navigation) 三大领域,而这些任务的高效完成,均以机器人对自身所处环境的全面精准理解为前提。
当前环境感知通信正逐步成为第六代移动通信系统(6G)的核心使能技术之一。为支撑其在复杂三维环境下的部署需求,西安电子科技大学、香港中文大学(深圳)和加拿大滑铁卢大学的研究团队联合提出了一个面向6G的高分辨率多模态三维无线电图谱数据集UrbanRadio3D,并构建了基于扩散模型的三维无线电图生成框架RadioDiff-3D。
现在的RAG(检索增强生成)系统。您给它一个简单直接的问题,它能答得头头是道
AlphaStar等证明强化学习在游戏等复杂任务上,表现出色,远超职业选手!那强化学习怎么突然就不行了呢?强化学习到底是怎么走上歧路的?
除了是知名 AI 播客「No Priors」的主理人之外,Sarah Guo 更知名的身份,是风险投资 Conviction 的创始人。
OpenAI前研究员、Meta「AI梦之队员」毕书超在哥大指出:AGI就在眼前,突破需高质数据、好奇驱动探索与高效算法;Scaling Law依旧有效,规模决定智能,终身学习才是重点。
具身智能加速演进,硬件本体持续刷新边界,具身模型也在数据与交互中渐现雏形。而在系统层,通用协同的操作底座依然缺位。
一句话概括,原来强化学习的“捷径”是天生的,智能体能去的地方(流形)被动作维度(低维流形)限制得死死的,根本没机会去那些没用的高维空间瞎逛。
知名AI大模型评测Chatbot Arena放榜!阿里Qwen3-235B-A22B-Instruct-2507位列大语言模型总榜第三,月之暗面Kimi-K2-0711-preview、深度求索DeepSeek-R1-0528并列为总榜第五,以开源之姿超越Claude 4、GPT-4.1等顶尖闭源模型。
在大模型工具层爆发之后,真正的问题逐渐清晰:我们并不缺能“生成文本”“画出图”的 AI 能力,而是缺一个能承载任务、连接角色、组织流程的系统。在当前多数产品仍围绕“输出内容”进行打磨的背景下,协作的逻辑、语境的保留、流程的延续,反而成了被忽视的基础设施。