LLM「拒绝回答」难题有救了!最新研究让AI学会人情世故 | COLM'25
LLM「拒绝回答」难题有救了!最新研究让AI学会人情世故 | COLM'25最新研究发现,模型的规模和通用语言能力与其处理敏感内容的判断能力并无直接关联,甚至开源模型表现的更好。
最新研究发现,模型的规模和通用语言能力与其处理敏感内容的判断能力并无直接关联,甚至开源模型表现的更好。
无需CUDA代码,给H100加速33%-50%! Flash Attention、Mamba作者之一Tri Dao的新作火了。
这篇报告第一次把对人心智状态的推断,放到和物理世界模型(physical world model)同等重要的位置上,并将其概念化为心智世界模型(mental world model)。相比于传统世界模型(如LeCun的JEPA)仅关注物理规律(物体运动、机械因果),心智世界模型则首次将心理规律(意图、情感、社会关系)纳入世界模型框架,实现“双轨建模”。
谁说扩散模型只能生成图像和视频?现在它们能高质量地写代码了,速度还比传统大模型更快!Inception Labs推出基于扩散技术的全新商业级大语言模型——Mercury。
当前,驱动科学研究的人工智能(AI for Science,AI4S)在单点取得了可观的进展,实现了工具层面的革新,然而要成为「革命的工具」,需要采用「通专融合 AGI」方式。
让机器人学会聪明且快速精准执行,一直是机器人操控领域的难题。为了解决这个问题,香港中文大学、北京大学、智平方和北京智源研究院联合创新性地提出了Fast-in-Slow(FiS-VLA),即一个统一的双系统VLA模型。
您有没有遇到过这样的场景:为了调试一个LLM应用的效果,您需要在一大堆Python代码中翻找那些零散的提示词字符串?每次想要A/B测试不同的提示时,就像在做开颅手术一样小心翼翼。
MoCa框架把单向视觉语言模型转化为双向多模态嵌入模型,通过持续预训练和异构对比微调,提升模型性能和泛化能力,在多模态基准测试中表现优异,尤其小规模模型性能突出。
最终体验 = 模型 + context (包括提示词、文件、代码库、业务数据,MCP服务等等一切喂给模型的东西),正好Andrej karpathy前几天天也整了个新提法叫Context engineering,这里可以碰瓷一下Andrej哈哈,这篇文章好几天前我发在小红书了
2025上半年AI Agent领域经历模型竞争加剧和范式演进,DeepSeek等新模型打破垄断,推动Tool Use和强化学习突破。Agent从Prompt、Workflow发展为自主决策、环境感知和工具使用的智能体。编程领域验证PMF,落地机会集中于垂直场景和C端创新,但商业壁垒和技术挑战仍待解决。