近日,中科大王杰教授团队 (MIRA Lab) 针对离线强化学习数据集存在多类数据损坏这一复杂的实际问题,提出了一种鲁棒的变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性,为机器人控制、自动驾驶等领域的鲁棒学习奠定了重要基础。论文发表在 CCF-A 类人工智能顶级会议 Neural Information Processing Systems(NeurIPS 2024)。
近日,中科大王杰教授团队 (MIRA Lab) 针对离线强化学习数据集存在多类数据损坏这一复杂的实际问题,提出了一种鲁棒的变分贝叶斯推断方法,有效地提升了智能决策模型的鲁棒性,为机器人控制、自动驾驶等领域的鲁棒学习奠定了重要基础。论文发表在 CCF-A 类人工智能顶级会议 Neural Information Processing Systems(NeurIPS 2024)。
利用概念激活向量破解大模型的安全对齐,揭示LLM重要安全风险漏洞。
预测金融市场和股票价格变动需分析公司表现、历史价格、行业事件及人类因素(如社交媒体和新闻报道)。
测评大模型Agent能力,从未如此直观。 新旧两版Claude 3.5 Sonnet在《我的世界》里PK盖楼,差距不要太明显,引来大量围观。
MEGA-Bench是一个包含500多个真实世界任务的多模态评测套件,为全面评估AI模型提供了高效工具。研究人员发现,尽管顶级AI模型在多个任务中表现出色,但在复杂推理和跨模态理解方面仍有提升空间。
这篇文章获选 Neurips 2024 Spotlight,作者均来自于伊利诺伊大学香槟分校计算机系。第一作者是博士生林啸,指导老师是童行行教授。所在的 IDEA 实验室的研究兴趣涵盖图机器学习、可信机器学习、LLM 优化以及数据挖掘等方面。
Sora 的发布让广大研究者及开发者深刻认识到基于 Transformer 架构扩散模型的巨大潜力。作为这一类的代表性工作,DiT 模型抛弃了传统的 U-Net 扩散架构,转而使用直筒型去噪模型。鉴于直筒型 DiT 在隐空间生成任务上效果出众,后续的一些工作如 PixArt、SD3 等等也都不约而同地使用了直筒型架构。
大规模语言模型(LLMs)已经在自然语言处理任务中展现了卓越的能力,但它们在复杂推理任务上依旧面临挑战。推理任务通常需要模型具有跨越多个步骤的推理能力,这超出了LLMs在传统训练阶段的表现。
文本到图像的生成模型让创作更加灵活,用户可以用自然语言引导生成图像。
高效组合多个大模型“取长补短”新思路,被顶会NeurIPS 2024接收。