
腾讯机器人要做什么、不做什么,张正友一次讲清楚了|WAIC2025
腾讯机器人要做什么、不做什么,张正友一次讲清楚了|WAIC2025腾讯一口气发布3个具身模型,包括动态感知、规划、感知行动联合模型,分别对应人类的左脑、右脑和小脑。
腾讯一口气发布3个具身模型,包括动态感知、规划、感知行动联合模型,分别对应人类的左脑、右脑和小脑。
大模型伦理竟然无法对齐?
本文由上海 AI Lab 和北京航空航天大学联合完成。 主要作者包括上海 AI Lab 和上交大联培博士生卢晓雅、北航博士生陈泽人、上海 AI Lab 和复旦联培博士生胡栩浩(共同一作)等。
近年来,大型语言模型(LLMs)在复杂推理任务中展现出惊人的能力,这在很大程度上得益于过程级奖励模型(PRMs)的赋能。PRMs 作为 LLMs 进行多步推理和决策的关键「幕后功臣」,负责评估推理过程的每一步,以引导模型的学习方向。
新一代大型推理模型,如 OpenAI-o3、DeepSeek-R1 和 Kimi-1.5,在复杂推理方面取得了显著进展。该方向核心是一种名为 ZERO-RL 的训练方法,即采用可验证奖励强化学习(RLVR)逐步提升大模型在强推理场景 (math, coding) 的 pass@1 能力。
目前将AI当作能力更强的信息提供者,才是个最好的选择。 AI正在变得越来越有“人味”,偷懒、撒谎、谄媚等现象的出现使得让AI不再只是冷冰冰的机器。如果说OpenAI o3等模型篡改代码拒绝关机指令是“求生本能”在作祟,那么AI又为何会化身“赛博舔狗”,选择近乎无底线地迎合用户呢?
在复杂的开放环境中,让足式机器人像人类一样自主完成「先跑到椅子旁,再快速接近行人」这类长程多目标任务,一直是 robotics 领域的棘手难题。传统方法要么局限于固定目标类别,要么难以应对运动中的视觉抖动、目标丢失等实时挑战,导致机器人在真实场景中常常「迷路」或「认错对象」。
AI语音成大厂必争之地 打开字节、阿里们的多模态能力地图,每块宝藏都标着"语音”。
卷疯了,通义千问真的卷疯了。
超越软件的编程范式革命 长久以来,编程被定义为一种严谨的、逻辑驱动的活动,是将人类意图转化为机器可执行的、确定性指令的过程。然而,AI正在颠覆这一核心定义,将编程从“Coding”这一动作,提升到“表达意图”和“实现愿景”的更高维度。