
西浦、利物浦大学提出:点云数据增强首个全面综述
西浦、利物浦大学提出:点云数据增强首个全面综述本文是对发表于模式识别领域顶刊Pattern Recognition 2024的最新综述论文:「Advancements in Point Cloud Data Augmentation for Deep Learning: A Survey 」的解读。
来自主题: AI技术研报
3302 点击 2024-05-14 13:17
本文是对发表于模式识别领域顶刊Pattern Recognition 2024的最新综述论文:「Advancements in Point Cloud Data Augmentation for Deep Learning: A Survey 」的解读。
昨天,Meta、纽约大学的研究者用「自我奖励方法」,让大模型自己生成自己的微调数据,从而在 Llama 2 70B 的迭代微调后超越了 GPT-4。今天,英伟达的全新对话 QA 模型「ChatQA-70B」在不使用任何 GPT 模型数据的情况下,在 10 个对话 QA 数据集上的平均得分略胜于 GPT-4。
本文探讨了大模型套壳的问题,解释了大模型的内核和预训练过程。同时,介绍了“原创派”和“模仿派”两种预训练框架的差异,并讨论了通过“偷”聊天模型数据进行微调的现象。最后,提出了把“壳”做厚才是竞争力的观点。
评估大模型对齐表现最高效的方式是?在生成式AI趋势里,让大模型回答和人类价值(意图)一致非常重要,也就是业内常说的对齐(Alignment)。
郑雯至今觉得记得几个月的下午,那天,她一个小时就赚了2毛钱。她毕业于湖南的一所专科学校,是一名大模型数据标注师