
ChatGPT上瘾,大脑萎缩47%!MIT祭出206页92图超长报告
ChatGPT上瘾,大脑萎缩47%!MIT祭出206页92图超长报告AI上瘾堪比「吸毒」!MIT最新研究惊人发现:长期依赖大模型,学习能力下降、大脑受损,神经连接减少47%。AI提高效率的说法,或许根本就是误解!
AI上瘾堪比「吸毒」!MIT最新研究惊人发现:长期依赖大模型,学习能力下降、大脑受损,神经连接减少47%。AI提高效率的说法,或许根本就是误解!
普林斯顿大学和Meta联合推出的新框架LinGen,以MATE线性复杂度块取代传统自注意力,将视频生成从像素数的平方复杂度压到线性复杂度,使单张GPU就能在分钟级长度下生成高质量视频,大幅提高了模型的可扩展性和生成效率。
为此,香港中文大学、字节跳动Seed和斯坦福大学研究团队出手,提出了一种面向同声传译的序贯策略优化框架 (Sequential Policy Optimization for Simultaneous Machine Translation, SeqPO-SiMT)。
OpenAI发布最新论文,找了到控制AI“善恶”的开关。
GRIT能让多模态大语言模型(MLLM)通过生成自然语言和图像框坐标结合的推理链进行「图像思维」,仅需20个训练样本即可实现优越性能!
随着大型模型需要处理的序列长度不断增加,注意力运算(Attention)的时间开销逐渐成为主要开销。
扩散模型在视频合成任务中取得了显著成果,但其依赖迭代去噪过程,带来了巨大的计算开销。尽管一致性模型(Consistency Models)在加速扩散模型方面取得了重要进展,直接将其应用于视频扩散模型却常常导致时序一致性和外观细节的明显退化。
GSPN是一种新型视觉注意力机制,通过线性扫描和稳定性-上下文条件,高效处理图像空间结构,显著降低计算复杂度。通过线性扫描方法建立像素间的密集连接,并利用稳定性-上下文条件确保稳定的长距离上下文传播,将计算复杂度显著降低至√N量级。
随着大模型应用场景的不断拓展,其在处理长期对话时逐渐暴露出的记忆局限性日益凸显,主要表现为固定长度上下文窗口导致的“健忘”问题。
还在靠“开盲盒”选择大模型? 来自弗吉尼亚理工大学的研究人员推出了个选型框架LensLLM