数学界对AI在数学中应用的看法存在分歧,但年轻一代更支持AI和验证工具。Vlad指出,通过递归自我改进,AI有潜力在数学和其他复杂问题上取得重大突破。随着AI在模式识别和自我改进方面的进步,它可能参与解决大型数学难题,如黎曼猜想。同时,数学家仍将在引导AI方向、规划研究领域和解释结果方面起关键作用。
数学界对AI在数学中应用的看法存在分歧,但年轻一代更支持AI和验证工具。Vlad指出,通过递归自我改进,AI有潜力在数学和其他复杂问题上取得重大突破。随着AI在模式识别和自我改进方面的进步,它可能参与解决大型数学难题,如黎曼猜想。同时,数学家仍将在引导AI方向、规划研究领域和解释结果方面起关键作用。
大模型分不清“9.9和9.11哪个更大”的谜团,终于被可解释性研究揭秘了!
工具调用是 AI 智能体的关键功能之一,AI 智能体根据场景变化动态地选择和调用合适的工具,从而实现对复杂任务的自动化处理。例如,在智能办公场景中,模型可同时调用文档编辑工具、数据处理工具和通信工具,完成文档撰写、数据统计和信息沟通等多项任务。
TL;DR:DuoAttention 通过将大语言模型的注意力头分为检索头(Retrieval Heads,需要完整 KV 缓存)和流式头(Streaming Heads,只需固定量 KV 缓存),大幅提升了长上下文推理的效率,显著减少内存消耗、同时提高解码(Decoding)和预填充(Pre-filling)速度,同时在长短上下文任务中保持了准确率。
在人形机器人领域,有一个非常值钱的问题:既然人形机器人的样子与人类类似,那么它们能使用网络视频等数据进行学习和训练吗?
现有的大模型主要依赖固定的参数和数据来存储知识,一旦训练完成,修改和更新特定知识的代价极大,常常因知识谬误导致模型输出不准确或引发「幻觉」现象。因此,如何对大模型的知识记忆进行精确控制和编辑,成为当前研究的前沿热点。
让大模型依靠群体的智能。
在NLP领域,研究者们已经充分认识并认可了表征学习的重要性,那么视觉领域的生成模型呢?最近,谢赛宁团队发表的一篇研究就拿出了非常有力的证据:Representation matters!
RAG通过纳入外部文档可以辅助LLM进行更复杂的推理,降低问题求解所需的推理深度,但由于文档噪声的存在,其提升效果可能会受限。中国人民大学的研究表明,尽管RAG可以提升LLM的推理能力,但这种提升作用并不是无限的,并且会受到文档中噪声信息的影响。通过DPrompt tuning的方法,可以在一定程度上提升LLM在面对噪声时的性能。
让 AI 与人类价值观对齐一直都是 AI 领域的一大重要且热门的研究课题,甚至很可能是 OpenAI 高层分裂的一大重要原因 ——CEO 萨姆・奥特曼似乎更倾向于更快实现 AI 商业化,而以伊尔亚・苏茨克维(Ilya Sutskever)为代表的一些研究者则更倾向于先保证 AI 安全。