时序大模型,参数规模突破十亿级别。 来自全球多只华人研究团队提出了一种基于混合专家架构(Mixture of Experts, MoE)的时间序列基础模型——Time-MoE。
时序大模型,参数规模突破十亿级别。 来自全球多只华人研究团队提出了一种基于混合专家架构(Mixture of Experts, MoE)的时间序列基础模型——Time-MoE。
OpenAI-o1替代品来了,大模型能根据任务复杂度进行不同时间的思考。 不限于推理性的逻辑或数学任务,一般问答也能思考的那种。 最近畅销书《Python机器学习》作者Sebastian Raschka推荐了一项新研究,被网友们齐刷刷码住了。
仅需1块80G显卡,大模型理解小时级超长视频。 智源研究院联合上海交通大学、中国人民大学、北京大学和北京邮电大学等多所高校带来最新成果超长视频理解大模型Video-XL。
近日,天桥脑科学研究院和普林斯顿大学等多所研究机构发布了一篇研究论文,详细阐述了长期记忆对 AI 自我进化的重要性,并且他们还提出了自己的实现框架 —— 基于多智能体的 Omne,其在 GAIA 基准上取得了第一名的成绩。
视频内容的快速增长给视频检索技术,特别是细粒度视频片段检索(VCMR),带来了巨大挑战。VCMR 要求系统根据文本查询从视频库中精准定位视频中的匹配片段,需具备跨模态理解和细粒度视频理解能力。
斯坦福吴佳俊团队与MIT携手打造的最新研究成果,让我们离实时生成开放世界游戏又近了一大步。
在这个信息爆炸的时代,如何让AI生成的视频更具创意,又符合特定需求?
OpenAI 最近发布的 o1 模型在数学、代码生成和长程规划等复杂任务上取得了突破性进展,据业内人士分析披露,其关键技术在于基于强化学习的搜索与学习机制。通过迭代式的自举过程,o1 基于现有大语言模型的强大推理能力,生成合理的推理过程,并将这些推理融入到其强化学习训练过程中。
哈佛大学研究了大型语言模型在回答晦涩难懂和有争议问题时产生「幻觉」的原因,发现模型输出的准确性高度依赖于训练数据的质量和数量。研究结果指出,大模型在处理有广泛共识的问题时表现较好,但在面对争议性或信息不足的主题时则容易产生误导性的回答。
近日,深度学习三巨头之一的Yoshua Bengio,带领团队推出了全新的RNN架构,以大道至简的思想与Transformer一较高下。