LLM记忆管理终于不用“手把手教”了,新框架让智能体自主管理记忆系统
LLM记忆管理终于不用“手把手教”了,新框架让智能体自主管理记忆系统不再依赖人工设计,让模型真正学会管理记忆。
不再依赖人工设计,让模型真正学会管理记忆。
近日刚好得了空闲,在研读 Anthropic 官方技术博客和一些相关论文,主题是「Agent 与 Context 工程」。2025 年 6 月以来,原名为「Prompt Engineering」的提示词工程,在 AI Agent 概念日趋火热的应用潮中,
在视频生成与理解的赛道上,常常见到分头发力的模型:有的专注做视频生成,有的专注做视频理解(如问答、分类、检索等)。而最近,一个开源项目 UniVid,提出了一个「融合」方向:把理解 + 生成融为一体 —— 他们希望用一个统一的模型,兼顾「看懂视频」+「生成视频」的能力。
复旦大学NLP实验室研发Game-RL,利用游戏丰富视觉元素和明确规则生成多模态可验证推理数据,通过强化训练提升视觉语言模型的推理能力。创新性地提出Code2Logic方法,系统化合成游戏任务数据,构建GameQA数据集,验证了游戏数据在复杂推理训练中的优势。
AI 会写字吗?在写字机器人衍生换代的今天,你或许并不觉得 AI 写字有多么困难。
在某种程度上,GPT-5可以被视作是o3.1。 该观点出自OpenAI研究副总裁Jerry Tworek的首次播客采访,而Jerry其人,正是o1模型的主导者之一。
随着大型语言模型(LLM)朝着通用能力迈进,并以通用人工智能(AGI)为最终目标,测试其生成问题的能力也正变得越来越重要。尤其是在将 LLM 应用于高级编程任务时,因为未来 LLM 编程能力的发展和经济整合将需要大量的验证工作。
在技术飞速更新迭代的今天,每隔一段时间就会出现「XX 已死」的论调。「搜索已死」、「Prompt 已死」的余音未散,如今矛头又直指 RAG。
多模态大模型在根据静态截图生成网页代码(Image-to-Code)方面已展现出不俗能力,这让许多人对AI自动化前端开发充满期待。
在机器人学习领域,提升基于生成式模型的控制策略(Policy)的性能通常意味着投入巨额成本进行额外的数据采集和模型训练,这极大地限制了机器人能力的快速迭代与升级。面对模型性能的瓶颈,如何在不增加训练负担的情况下,进一步挖掘并增强现有策略的潜力?