
刚刚!ASP-DAC 2025最佳论文出炉,无问芯穹上交大论文获奖
刚刚!ASP-DAC 2025最佳论文出炉,无问芯穹上交大论文获奖由无问芯穹与上海交通大学联合研究团队提出的视频生成软硬一体加速器,首次实现通过差分近似和自适应数据流解决 VDiT 生成速度缓慢瓶颈,推理速度相比 A100 提升高达 16.44 倍。
由无问芯穹与上海交通大学联合研究团队提出的视频生成软硬一体加速器,首次实现通过差分近似和自适应数据流解决 VDiT 生成速度缓慢瓶颈,推理速度相比 A100 提升高达 16.44 倍。
ChatGPT等聊天机器人背后的算法能从各种各样的网络文本中抓取万亿字节的素材,文本来源可以是网络文章,也可以是社媒平台的帖子,还可以是视频里的字幕或评论。
近年来视觉语⾔基础模型(Vision Language Models, VLMs)在多模态理解和⾼层次常识推理上⼤放异彩,如何将其应⽤于机器⼈以实现通⽤操作是具身智能领域的⼀个核⼼问题。这⼀⽬标的实现受两⼤关键挑战制约:
仅使用20K合成数据,就能让Qwen模型能力飙升——
可灵,视频生成领域的佼佼者,近来动作不断。继发布可灵 1.6 后,又公开了多项研究揭示视频生成的洞察与前沿探索 ——《快手可灵凭什么频繁刷屏?揭秘背后三项重要研究》。
模型蒸馏也有「度」,过度蒸馏,只会导致模型性能下降。最近,来自中科院、北大等多家机构提出全新框架,从两个关键要素去评估和量化蒸馏模型的影响。结果发现,除了豆包、Claude、Gemini之外,大部分开/闭源LLM蒸馏程度过高。
该技术报告的主要作者 Lu Wang, Fangkai Yang, Chaoyun Zhang, Shilin He, Pu Zhao, Si Qin 等均来自 Data, Knowledge, and Intelligence (DKI) 团队,为微软 TaskWeaver, WizardLLM, Windows GUI Agent UFO 的核心开发者。
我亲眼见证了数据量的爆炸式增长以及行业的巨额投入。当时就很明显,AI是推动这些数据增长背后的关键动力。那是一个非常有趣的时刻——Meta正在完成“移动优先”的过渡,开始迈向“AI 优先”。
ittor Geometric 1.0是由中国人民大学与东北大学联合开发的图机器学习库,基于国产Jittor框架,高效灵活,可助力处理复杂图结构数据,性能优于同类型框架,支持多种前沿图神经网络模型,已开源供用户使用。
近期关于 scaling law 的讨论甚嚣尘上,很多观点认为 scale law is dead. 然而,我们认为,高质量的 “无监督” 数据才是 scaling law 的关键,尤其是教科书级别的高质量的知识语料。此外,尽管传统的语料快枯竭了,但是互联网上还有海量的视频并没有被利用起来,它们囊括了丰富的多种模态的知识,可以帮助 VLMs 更好好地理解世界。