校准LLM元认知能力,Agent才能清晰地向用户传达不确定性 | 重要
校准LLM元认知能力,Agent才能清晰地向用户传达不确定性 | 重要随着大型语言模型(LLMs)日益融入关键决策场景,其元认知能力——即识别、评估和表达自身知识边界的能力——变得尤为重要。
来自主题: AI技术研报
6401 点击 2025-04-26 13:57
随着大型语言模型(LLMs)日益融入关键决策场景,其元认知能力——即识别、评估和表达自身知识边界的能力——变得尤为重要。
2025,随着大语言模型技术的迅猛发展,数据科学领域正经历一场静默的革命。传统的特征工程、模型训练与迭代优化流程,正被智能化的研发助手所改变。
仅调整5%的骨干网络参数,就能超越全参数微调效果?!
算力砍半,视觉生成任务依然SOTA!
复旦大学和美团的研究者们提出了UniToken——一种创新的统一视觉编码方案,在一个框架内兼顾了图文理解与图像生成任务,并在多个权威评测中取得了领先的性能表现。
RL + LLM 升级之路的四层阶梯。
近年来,具身智能领域发展迅猛,使机器人在复杂任务中拥有接近人类水平的双手操作能力,不仅具有重要的研究与应用价值,也是迈向通用人工智能的关键一步。
无需数据标注,在测试时做强化学习,模型数学能力暴增159%!
通过蒙特卡洛树搜索筛选高难度样本,ThinkLite-VL仅用少量数据就能显著提升视觉语言模型的推理能力,无需知识蒸馏,为高效训练提供了新思路。
在大语言模型(LLMs)竞争日趋白热化的今天,「推理能力」已成为评判模型优劣的关键指标。