告别“音画割裂”与“人物崩坏”!AutoMV:首个听懂歌词、卡准节拍的开源全曲级MV生成Agent
告别“音画割裂”与“人物崩坏”!AutoMV:首个听懂歌词、卡准节拍的开源全曲级MV生成Agent现有的AI视频生成模型虽然在短片上效果惊人,但面对一首完整的歌曲时往往束手无策——画面不连贯、人物换脸、甚至完全不理会歌词含义。
现有的AI视频生成模型虽然在短片上效果惊人,但面对一首完整的歌曲时往往束手无策——画面不连贯、人物换脸、甚至完全不理会歌词含义。
视频 - 音频联合生成的研究近期在开源与闭源社区都备受关注,其中,如何生成音视频对齐的内容是研究的重点。
做agent简单,但是做能落地的agent难,做能落地的长周期agent更是难上加难!
在空间智能(Spatial Intelligence)飞速发展的今天,全景视角因其 360° 的环绕覆盖能力,成为了机器人导航、自动驾驶及虚拟现实的核心基石。然而,全景深度估计长期面临 “数据荒” 与 “模型泛化差” 的瓶颈。
在 LLM Agent 领域,有一个常见的问题:Agent 明明 "看到了" 错误信息,却总是重蹈覆辙。
在电影与虚拟制作中,「看清一个人」从来不是看清某一帧。导演通过镜头运动与光线变化,让观众在不同视角、不同光照条件下逐步建立对一个角色的完整认知。然而,在当前大量 customizing video generation model 的研究中,这个最基本的事实,却往往被忽视。
作为大模型从业者或研究员的你,是否也曾为一个模型的 “长文本能力” 而兴奋,却在实际应用中发现它并没有想象中那么智能?
如今,大模型在理解、推理、编程等方面表现突出,但AI的“科学通用能力”(SGI)尚无统一标准。
文本提示图像分割(Text-prompted image segmentation)是实现精细化视觉理解的关键技术,在人机交互、具身智能及机器人等前沿领域具有重大的战略意义。这项技术使机器能够根据自然语言指令,在复杂的视觉场景中定位并分割出任意目标。
我们经常在一些对比 AI 性能的测试中,看到宣称基础模型在自然语言理解、推理或编程任务等性能超人类的相关报道。